

Problèmes inverses : optimisation et inférence

Jérôme IDIER

idier@irccyn.ec-nantes.fr
http://www.irccyn.ec-nantes.fr/~idier

Institut de Recherche en Communications et Cybernétique de Nantes Équipe Analyse et décision en traitement du signal et de l'image

ÉCOLE D'ÉTÉ DE PEYRESQ

Problèmes inverses en traitement des signaux et des images 20-26 juillet 2009

- I. Généralités
- II. Déconvolution de train d'impulsions
- III. Restauration d'image et optimisation
- IV. Problèmes aveugles, méthodes autodidactes Bibliographie

I. Généralités

Problèmes directs et inverses ; exemples Problèmes mal posés ; conditionnement Méthodes naïves, régularisation Approche pénalisée, interprétation bayésienne

- II. Déconvolution de train d'impulsions
- **III.** Restauration d'image et optimisation
- IV. Problèmes aveugles, méthodes autodidactes Bibliographie

Problèmes inverses

Exemple 1 : tomographie

5/97

• Tomographie à rayons X (imagerie médicale)

?

\lhd I. Généralités \vartriangleright

 \sim Reconstruction 2D à partir de projections (problème direct linéaire) :

• Tomographie de diffraction (problème direct non linéaire)

Une onde plane émise à partir d'une source S se propage dans le domaine de l'objet $D_{\rm O}$. Le champ diffracté est mesuré par des capteurs placés dans le domaine $D_{\rm M}$

Exemple 2 : déconvolution

9/97

• Exemples 1D

– en temps : égalisation de canal, annulation d'echo, correction de distorsion, ...

- en fréquence : spectrométrie

• Convolution 2D et restauration d'image

modèle :
$$z(r, s) = \iint x(u, v) h(r - u, s - v) du dv$$
 $(+ b(r, s))$
 $h(r, s)$: noyau 2D ou fonction d'étalement de point
Exemples de noyaux 2D

Plusieurs points communs à ces exemples

• Chaîne de compétence

• Modèle direct

$$oldsymbol{z} = H(oldsymbol{x}) + \textit{incertitudes}, \quad oldsymbol{z} \in \mathbb{R}^N, \ oldsymbol{x} \in \mathbb{R}^M$$

voire

$$z = H x + incertitudes, H matrice N \times M$$

• Ces problèmes sont mal posés

Problèmes inverses mal posés

Estimer $oldsymbol{x}$ à partir de données $oldsymbol{z} = \mathbf{H}(oldsymbol{x}) + \mathit{incertitudes}$

 $\|\mathbf{H}(m{x}) - \mathbf{H}(m{x}_0)\|$ « petit » n'implique pas forcément $\|m{x} - m{x}_0\|$ « petit »

Conditions de Hadamard [Hadamard 1902]

Soit $H: X \to Z$, X et Z espaces de Hilbert

La résolution de l'équation z = Hx est dite **bien posé** si la solution $\hat{x}(z)$ vérifie :

(1) existence
(2) unicité
(3) stabilité : $\|\boldsymbol{z} - \boldsymbol{z}'\| \to 0 \Rightarrow \|\widehat{x}(z) - \widehat{x}(z')\| \to 0$

 $\mathsf{NB}: \mathsf{pour}\ H \text{ opérateur linéaire, } \square \Leftrightarrow z \in \mathrm{Im}\ H ; \square \Leftrightarrow \mathrm{Ker}\ H = \{0\}$

Sinon, le problème est dit mal posé.

Équation intégrale de Fredholm de première espèce

$$z(s) = Hx(s) = \int_{a}^{b} h(s, t) x(t) dt, \quad c \leq s \leq d$$

avec h fonction continue de dérivée partielle $\frac{\partial h}{\partial s}$ continue.

Connaissant $\widetilde{z} \simeq z$, trouver une solution continue $\widetilde{x} \simeq x$

... est un problème mal posé

(voir [Tikhonov et Arsénine 1976, Nashed 1981] et p. 19)

Passage en dimension finie

Une étape indispensable pour le calcul pratique d'une solution

- Choix d'une base de décomposition pour x
 - Famille obtenue par décalage d'un noyau $\gamma(t)$

$$x(t) = \sum_{n=1}^{N} x_n \gamma(t - \tau_n) + x^*(t), a \leqslant \tau_n \leqslant b$$

- Exemple : indicatrice de pixel, sinus cardinal, ondelette...

- \bullet Discrétisation de l'opérateur d'observation H
 - Calcul analytique des coefficients
 - Méthode des moments [Harrington 1987]

Le problème est-il bien posé en dimension finie?

Inversion généralisée en dimension finie (cas linéaire)

$$oldsymbol{z} = \mathbf{H}oldsymbol{x} + oldsymbol{b}, \quad oldsymbol{x} \in \mathbb{R}^M, \,\, oldsymbol{z} \in \mathbb{R}^N$$

(1) **Existence** : si $z \notin \text{Im } \mathbf{H} \rightarrow \text{ projection de } z \text{ sur Im } \mathbf{H}$ \Leftrightarrow *Solution des moindres carrés* : \hat{x}^{MC} minimise $||z - \mathbf{H}x||^2$ $\Rightarrow (\mathbf{H}^{t}\mathbf{H})\hat{x}^{MC} = \mathbf{H}^{t}z$

- (2) Unicité : si Ker $\mathbf{H} \neq \{\mathbf{0}\} \rightarrow \text{ contrainte de norme minimale}$ $\Leftrightarrow \textit{Inverse généralisée :} \qquad \widehat{x}^{\mathsf{IG}} = \text{projection de } \widehat{x}^{\mathsf{MC}} \text{ sur } (\mathrm{Ker } \mathbf{H})^{\perp}$
- ③ Stabilité : assurée en dimension finie

Le problème d'inversion est donc bien posé au sens de Hadamard, et pourtant...

Décomposition en valeurs singulières

Équation normale : $\mathbf{H}^{t}\boldsymbol{z} = (\mathbf{H}^{t}\mathbf{H})\boldsymbol{x}$

Décomposition en valeurs singulières de H

- $(\boldsymbol{u}_n)_{n=1}^N, \ (\boldsymbol{v}_m)_{m=1}^M$ bases orthonormées de $\mathbb{R}^N, \ \mathbb{R}^M$,
- $(\lambda_i)_{i=1}^{\max(M, N)}$, suite décroissante positive, $\lambda_i = 0$ si $i > \min(M, N)$ tels que

$$egin{aligned} & \mathbf{H}m{v}_m = \lambda_mm{u}_m & \mathbf{H}^{\mathrm{t}}m{u}_n = \lambda_nm{v}_n \ & \Rightarrow & \mathbf{H}^{\mathrm{t}}\mathbf{H}m{v}_m = \lambda_m^2m{v}_m & \mathbf{H}\mathbf{H}^{\mathrm{t}}m{u}_n = \lambda_n^2m{u}_n \end{aligned}$$

et
$$\mathbf{H} = \mathbf{U}\Lambda\mathbf{V}^{t}$$
 avec $\mathbf{U} = (\boldsymbol{u}_{n}), \, \mathbf{V} = (\boldsymbol{v}_{n}), \, \Lambda_{mn} = \begin{cases} \lambda_{n} & \text{si } m = n \leq \min(M, N) \\ 0 & \text{sinon} \end{cases}$

Inverse généralisée

$$\widehat{\boldsymbol{x}}^{\mathsf{IG}} = \sum_{m=1}^{M} \alpha_m \boldsymbol{v}_m \text{ avec } \alpha_m = \begin{cases} \boldsymbol{u}_m^{\mathsf{t}} \boldsymbol{z} / \lambda_m & \mathsf{si} \quad \lambda_m > 0\\ 0 & \mathsf{si} \quad \lambda_m = 0 \end{cases}$$

Inverse généralisée et conditionnement

Propagation d'erreur

Soit
$$I = \operatorname{rang}(\mathbf{H}) = \max_{\lambda_i > 0} i$$
. Si $\mathbf{z} \to \mathbf{z} + \delta \mathbf{z}$ alors $\widehat{\mathbf{x}}^{\mathsf{IG}} \to \widehat{\mathbf{x}}^{\mathsf{IG}} + \delta \widehat{\mathbf{x}}^{\mathsf{IG}}$ et

$$\frac{\left\|\delta \widehat{\mathbf{x}}^{\mathsf{IG}}\right\|^2}{\left\|\widehat{\mathbf{x}}^{\mathsf{IG}}\right\|^2} \leqslant \frac{\sum_{i=1}^{I} (\mathbf{u}_i^{\mathsf{t}} \delta \mathbf{z})^2}{\sum_{i=1}^{I} (\mathbf{u}_i^{\mathsf{t}} \mathbf{z})^2} \frac{\lambda_i^2}{\lambda_i^2} \qquad \left(= \frac{\left\|\delta \mathbf{z}\right\|^2}{\left\|\mathbf{z}\right\|^2} \frac{\lambda_i^2}{\lambda_N^2} \text{ si } I = N \right)$$

• La borne est atteinte pour certains couples $(\boldsymbol{z}, \delta \boldsymbol{z})$!

• $C(\mathbf{H}) = \frac{\lambda_1}{\lambda_{\min(M,N)}}$: nombre de condition de \mathbf{H} , $C(\mathbf{H}^t\mathbf{H}) = \frac{\lambda_1^2}{\lambda_{\min(M,N)}^2}$ \mathbf{H} est dite *mal conditionnée* si $C(\mathbf{H})$ est grand (par exemple $C(\mathbf{H}) > 10^5$). Retour sur le cas continu

Propriétés spectrales des opérateurs compacts dans des espaces de Hilbert

• Système singulier $(\lambda_n, u_n, v_n)_{n \in \mathbb{N}}$ d'un opérateur compact H [Brézis 1983] :

$$\begin{split} \lambda_n \geqslant 0 \ \text{valeurs singulières, } u_n \ \text{et } v_n \ \text{fonctions singulières telles que} \\ &- (u_n) \ \text{base orthonormale de } (\operatorname{Ker} H)^{\perp}, \\ &- (v_n) \ \text{base orthonormale de } (\operatorname{Ker} (H^*))^{\perp}, \\ &- H \ u_n = \lambda_n \ v_n \quad \text{et} \quad H^* \ v_n = \lambda_n \ u_n \\ \text{avec } H^* \ \text{opérateur adjoint de } H, \ \text{i.e., tel que } \langle Hx, z \rangle_Z = \langle x, H^*z \rangle_X \end{split}$$

•
$$\widehat{x}^{\text{IG}} = \sum_{n \in \mathbb{N}} \lambda_n^{-1} \langle z, v_n \rangle_Z u_n$$

• En général, on a $\lim_{n \to \infty} \lambda_n = 0$

Conclusion provisoire...

20/97

Problème mal posé \rightsquigarrow **le respect des données ne suffit pas !** Toute méthode s'appuyant seulement sur ce respect sera dite **naïve**...

(1) Inversion directe de $\boldsymbol{z} = \mathbf{H}(\boldsymbol{x})$

$$\widehat{m{x}}^{\mathsf{ID}} = \mathbf{H}^{-1}(m{z})$$
 (existence?)

② Moindres carrés, inversion généralisée

$$\widehat{m{x}}^{\mathsf{MC}} = rgmin_{m{x}} \|m{z} - \mathbf{H}(m{x})\|^2 = \widehat{m{x}}^{\mathsf{ID}}$$
 si $\widehat{m{x}}^{\mathsf{ID}}$ existe

3 Maximum de vraisemblance

Soit
$$p(\boldsymbol{z} \mid \boldsymbol{x}) = p_{\boldsymbol{B}}(\boldsymbol{z} - \boldsymbol{x})$$
 la densité de probabilité de \boldsymbol{z} sachant \boldsymbol{x} :
 $\widehat{\boldsymbol{x}}^{\mathsf{MV}} = \operatorname*{arg\,max}_{\boldsymbol{x}} p(\boldsymbol{z} \mid \boldsymbol{x}) = \widehat{\boldsymbol{x}}^{\mathsf{MC}}$ dans le cas d'un bruit gaussien

(4) deconv de Matlab

. . .

Régularisation = ajout d'une information a priori

Approche paramétrée

$$\widehat{oldsymbol{ heta}} = rgmin_{oldsymbol{ heta}} \left\| oldsymbol{z} - \mathbf{H}ig(oldsymbol{x}(oldsymbol{ heta})ig)
ight\|^2$$

Problème de *moindres carrés non linéaires*

 \sim minimisation (locale) par l'algorithme de Levenberg-Marquadt

Prise en compte de contraintes

Exemple : positivité des composantes de x \rightsquigarrow minimisation sous contrainte d'inégalités

22/97

Approche multi-objectif

Assurer $\|\boldsymbol{z} - \mathbf{H}(\boldsymbol{x})\|^2$ petit, mais aussi $\Phi(\boldsymbol{x})$ petit Exemple : $\Phi(\boldsymbol{x}) = \int (x'(t))^2 dt$

(régularité du signal dans le cas fonctionnel [Tikhonov et Arsénine 1976])

Régularisation par minimisation tronquée

- E.g. : K itérations d'un algorithme de plus profonde descente pour minimiser $\|\boldsymbol{z} \mathbf{H}(\boldsymbol{x})\|^2$, initialisé par $\boldsymbol{x} = \mathbf{0}$
- Comparable à une démarche multi-objectif dans certains cas, avec $\Phi(\boldsymbol{x}) = \|\boldsymbol{x}\|^2$ [Lagendijk *et coll.* 1988]

23/97

Approche multi-objectif \rightsquigarrow Approche pénalisée

La régularisation comme un compromis...

$$\mathcal{J}_{\mu}(oldsymbol{x}) = \left\|oldsymbol{z} - \mathbf{H}oldsymbol{x}
ight\|^2 + \mu \Phi(oldsymbol{x})$$

 μ : paramètre de régularisation

 $\widehat{oldsymbol{x}}_{\mu}(oldsymbol{z}) = rgmin_{oldsymbol{x}}\mathcal{J}_{\mu}(oldsymbol{x})$

$\mu \to 0$	$\mu ightarrow \infty$
$\widehat{m{x}}_0 = rgmin_{m{x}} \ m{z} - m{H}m{x}\ ^2$ solution non régularisée	$\widehat{m{x}}_{\infty} = rgmin_{m{x}} \Phi(m{x})$ solution <i>a priori</i> (ne dépend pas de <i>z</i>)

Courbe en L » [Hansen 1992]

(*i.e.*, frontière de Pareto en échelle log-log)

Propriété : $\mathcal{J}_0(\widehat{\boldsymbol{x}}_{\mu})$ et $-\Phi(\widehat{\boldsymbol{x}}_{\mu})$ sont des fonctions croissantes de μ

à démontrer en combinant
$$\begin{cases} \mathcal{J}_{\mu_1}(\widehat{\boldsymbol{x}}_{\mu_1}) \leqslant \mathcal{J}_{\mu_1}(\widehat{\boldsymbol{x}}_{\mu_2}), \\ \mathcal{J}_{\mu_2}(\widehat{\boldsymbol{x}}_{\mu_2}) \leqslant \mathcal{J}_{\mu_2}(\widehat{\boldsymbol{x}}_{\mu_1}) \end{cases}$$

Estimation bayésienne

Règle de Bayes

$$p(\boldsymbol{x} \,|\, \boldsymbol{z}) = \frac{p(\boldsymbol{z} \,|\, \boldsymbol{x}) p(\boldsymbol{x})}{p(\boldsymbol{z})} \propto p(\boldsymbol{z} \,|\, \boldsymbol{x}) p(\boldsymbol{x})$$

 $p(\boldsymbol{z} \,|\, \boldsymbol{x})$: vraisemblance, $p(\boldsymbol{x})$: loi *a priori* sur \boldsymbol{x} , $p(\boldsymbol{x} \,|\, \boldsymbol{z})$: loi *a posteriori*

Décision $p(\boldsymbol{x} \mid \boldsymbol{z}) \stackrel{?}{\rightsquigarrow} \widehat{\boldsymbol{x}}$

- Maximum *a posteriori* : $\widehat{x}^{\mathsf{MAP}}$
 - Espérance *a posteriori* :
 - MAP Marginal :

.

$$\widehat{\boldsymbol{x}}^{\mathsf{MAP}} = \underset{\boldsymbol{x}}{\operatorname{arg\,max}} p(\boldsymbol{x} \mid \boldsymbol{z})$$

$$\widehat{\boldsymbol{x}}^{\mathsf{EAP}} = \operatorname{E}[\boldsymbol{X} \mid \boldsymbol{Z} = \boldsymbol{z}] = \int \boldsymbol{x} p(\boldsymbol{x} \mid \boldsymbol{z}) \, \mathrm{d}\boldsymbol{x}$$

$$\widehat{\boldsymbol{x}}^{\mathsf{MAPM}}_{m} = \underset{\boldsymbol{x}_{m}}{\operatorname{arg\,max}} p(\boldsymbol{x}_{m} \mid \boldsymbol{z}), \quad 1 \leq m \leq M$$

• Estimée linéaire d'erreur
moyenne quadratique minimale :
$$\hat{x}^{ELMQ} = \mathbf{R}_{xz}\mathbf{R}_{z}^{-1}(Z - m_{z}) + m_{x}$$

avec $m_{x} = \mathbf{E}[X]$, $m_{z} = \mathbf{E}[Z]$, $\mathbf{R}_{xz} = \mathbf{E}[XZ^{t}] - m_{x}m_{z}^{t}$, $\mathbf{R}_{z} = \mathbf{E}[ZZ^{t}] - m_{z}m_{z}^{t}$

26/97

Théorie des coûts bayésiens

Etant donné la fonction de coût $C(\textit{estimée},\textit{vraie valeur}),\ \widehat{x}(\cdot)$ minimise au sens fonctionnel le coût moyen

$$E[C(\widehat{\boldsymbol{x}}(\boldsymbol{Z}), \boldsymbol{X}^*] = \iint C(\widehat{\boldsymbol{x}}(\boldsymbol{z}), \boldsymbol{x}^*) p(\boldsymbol{z} \mid \boldsymbol{x}^*) p(\boldsymbol{x}^*) \, \mathrm{d}\boldsymbol{z} \, \mathrm{d}\boldsymbol{x}^*$$

Par exemple :

$\widehat{oldsymbol{x}}$	$C(oldsymbol{x},oldsymbol{x}^*)$
$\widehat{\boldsymbol{x}}^{MAP} = rg\max_{\boldsymbol{x}} p(\boldsymbol{x} \mid \boldsymbol{z})$	$-\delta(oldsymbol{x}-oldsymbol{x}^*)$
$\widehat{m{x}}^{EAP} = \mathrm{E}[m{X}^{m{x}} m{Z} = m{z}]$	$\left\ oldsymbol{x}-oldsymbol{x}^{*} ight\ ^{2}$ (risque quadratique)
$\widehat{x}_m^{MAPM} = \operatorname*{argmax}_{x} p(x_m \boldsymbol{z}), \ 1 \leqslant m \leqslant M$	$-\sum_m \delta(x_m - x_m^*)$
$\widehat{x}^{ELMQ} = \mathbf{R}_{oldsymbol{xz}} \mathbf{R}_{oldsymbol{z}}^{-1} (oldsymbol{Z} - oldsymbol{m_z}) + oldsymbol{m_x}$	$\left\ oldsymbol{x}-oldsymbol{x}^{*} ight\ ^{2}$ sous contrainte de linéarité

Lien entre régularisation par pénalisation et maximum a posteriori

 $\widehat{\boldsymbol{x}}^{\mathsf{MAP}} = \arg \max_{\boldsymbol{x}} p(\boldsymbol{x} \mid \boldsymbol{z}) = \arg \max_{\boldsymbol{x}} p(\boldsymbol{z} \mid \boldsymbol{x}) p(\boldsymbol{x}) = \arg \min_{\boldsymbol{x}} \left(-\ln p(\boldsymbol{z} \mid \boldsymbol{x}) - \ln p(\boldsymbol{x}) \right)$ C'est donc un cas particulier d'estimateur de maximum de vraisemblance pénalisée

Cadre « énergétique »	\longleftrightarrow	Cadre probabiliste
énergie $\Phi(oldsymbol{x})$	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	densité de proba $p(\boldsymbol{x}) = \frac{e^{-\Phi(\boldsymbol{x})/T}}{\int_{\boldsymbol{x}} e^{-\Phi(\boldsymbol{x})/T} \mathrm{d}\boldsymbol{x}}$
$\mathcal{J}(oldsymbol{x}) = \Omega(oldsymbol{z} - oldsymbol{A}oldsymbol{x}) + \mu \Phi(oldsymbol{x})$	\longleftrightarrow	règle de Bayes $p(\boldsymbol{x},\boldsymbol{z}) = p(\boldsymbol{z} \boldsymbol{x})p(\boldsymbol{x})$
solution pénalisée $\operatorname*{argmin}_{{m x}} \mathcal{J}({m x})$	\equiv	$\widehat{\boldsymbol{x}}^{MAP} = \operatorname*{argmax}_{\boldsymbol{x}} p(\boldsymbol{x} \boldsymbol{z})$
?	\leftrightarrow	marginalisation, conditionnement (<i>e.g.</i> , variance d'erreur d'estimation)

Cadre linéaire gaussien

 $m{z} = \mathbf{H}m{x} + m{b}, \ m{b} \sim \mathcal{N}(m{m_b}, \, \mathbf{R_b}), \ m{x} \sim \mathcal{N}(m{m_x}, \, \mathbf{R_x}), \ (m{x}, \, m{b})$ indépendant

• Anti-log-vraisemblance a posteriori

$$L(\boldsymbol{x} \,|\, \boldsymbol{z}) \# \frac{1}{2} \,\| \boldsymbol{z} - \mathbf{H} \boldsymbol{x} - \boldsymbol{m}_{\boldsymbol{b}} \|_{\mathbf{R}_{\boldsymbol{b}}^{-1}}^{2} + \frac{1}{2} \,\| \boldsymbol{x} - \boldsymbol{m}_{\boldsymbol{x}} \|_{\mathbf{R}_{\boldsymbol{x}}^{-1}}^{2}$$

- Forme information $\widehat{\boldsymbol{x}}^{\mathsf{MAP}} = (\mathbf{H}^{\mathsf{t}} \mathbf{R}_{\boldsymbol{b}}^{-1} \mathbf{H} + \mathbf{R}_{\boldsymbol{x}}^{-1})^{-1} (\mathbf{H}^{\mathsf{t}} \mathbf{R}_{\boldsymbol{b}}^{-1} (\boldsymbol{z} - \boldsymbol{m}_{\boldsymbol{b}}) + \mathbf{R}_{\boldsymbol{x}}^{-1} \boldsymbol{m}_{\boldsymbol{x}})$
- Forme covariance

lemme d'inversion
 de matrice

 $\widehat{x}^{\mathsf{MAP}} = m_{x} + \mathbf{R}_{x}\mathbf{H}^{\mathrm{t}}(\mathbf{R}_{b} + \mathbf{H}\mathbf{R}_{x}\mathbf{H}^{\mathrm{t}})^{-1}(z - \mathbf{H}m_{x} - m_{b})$

- Quatre en un... $\widehat{x}^{\mathsf{MAP}} = \widehat{x}^{\mathsf{EAP}} = \widehat{x}^{\mathsf{MMAP}} = \widehat{x}^{\mathsf{ELMQ}}$
- Matrice de covariance *a posteriori*

$$E[(\boldsymbol{X} - \hat{\boldsymbol{x}}^{\mathsf{EAP}})(\boldsymbol{X} - \hat{\boldsymbol{x}}^{\mathsf{EAP}})^{t} | \boldsymbol{Z} = \boldsymbol{z}] = (\mathbf{H}^{t}\mathbf{R}_{\boldsymbol{b}}^{-1}\mathbf{H} + \mathbf{R}_{\boldsymbol{x}}^{-1})^{-1} \\ = \mathbf{R}_{\boldsymbol{x}} - \mathbf{R}_{\boldsymbol{x}}\mathbf{H}^{t}(\mathbf{H}\mathbf{R}_{\boldsymbol{x}}\mathbf{H}^{t} + \mathbf{R}_{\boldsymbol{b}})^{-1}\mathbf{H}\mathbf{R}_{\boldsymbol{x}}$$

I. Généralités

II. Déconvolution de train d'impulsions

Pénalisation convexe non quadratique Modèle de train d'impulsions : modèle Bernoulli-Gaussien L2+L1 ou L2+L0?

- III. Restauration d'image et optimisation
- IV. Problèmes aveugles, méthodes autodidactes Bibliographie

Introduction

Caractérisation de défauts ponctuels, de frontières nettes, ..., à partir de données à résolution limitée spectrométrie, astronomie, sismologie, évaluation non destructive, ...

> train d'impulsions \star ondelette + bruit = trace $x \star h + b = z$

Exemple [Champagnat *et coll.* 2001]

ondelette

Approches "naïves"

① Méthode des moindres carrés

trouver \hat{x} qui minimise $J(x) = ||z - Hx||^2$ $\rightarrow (H^tH) \hat{x} = H^tz$ (H : matrice de convolution)

② Approche probabiliste

Maximum de vraisemblance si *b* est supposé *blanc gaussien* :

$$\hat{\boldsymbol{x}} = rg\max_{\boldsymbol{x}} p(\boldsymbol{z} \mid \boldsymbol{x}), \quad p(\boldsymbol{z} \mid \boldsymbol{x}) \propto \exp\left\{-\frac{1}{2\sigma_b^2} \left\|\boldsymbol{z} - \mathbf{H}\boldsymbol{x}\right\|^2\right\}$$

③ Division spectrale (par transformées de Fourier)

$$\widehat{X}(\nu) = \frac{Z(\nu)}{H(\nu)} \quad \left(=X(\nu) + \frac{B(\nu)}{H(\nu)}\right)$$

$$1=2\simeq 3$$

Régularisation quadratique

① Moindres carrés pénalisés (solution de Tikhonov)

trouver $\hat{\boldsymbol{x}}$ qui minimise $J(\boldsymbol{x}) = \|\boldsymbol{z} - \mathbf{H}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{x}\|^2 \rightsquigarrow \left(\mathbf{H}^{\mathrm{t}}\mathbf{H} + \mu\mathbf{I}\right) \hat{\boldsymbol{x}} = \mathbf{H}^{\mathrm{t}}\boldsymbol{z}$

② Approche probabiliste bayésienne

 $Maximum \ a \ posteriori$ si b et x sont supposés blancs gaussiens

$$\hat{\boldsymbol{x}} \text{ maximise } p(\boldsymbol{x} \mid \boldsymbol{z}) = \frac{p(\boldsymbol{z} \mid \boldsymbol{x}) p(\boldsymbol{x})}{p(\boldsymbol{z})},$$
$$\iff \hat{\boldsymbol{x}} \text{ minimise } \left(-\ln p(\boldsymbol{z} \mid \boldsymbol{x})\right) + \left(-\ln p(\boldsymbol{x})\right)$$

③ Filtrage de Wiener :
$$\widehat{X}(\nu) = \frac{H^*(\nu)}{|H(\nu)|^2 + \mu} Z(\nu) \quad \left(\mu = \frac{\sigma_b^2}{\sigma_x^2}\right)$$

$$(1)=(2)\simeq (3)$$

Solution linéaire simple, mais pas de compromis satisfaisant

Égalisation spectrale dans la bande utile

Vers des solutions non linéaires dans le cadre bayésien

L'histogramme d'un train d'impulsion est typiquement non gaussien !

Pénalisation convexe non quadratique

Cadre bayésien

maximiser
$$p(\boldsymbol{x} \mid \boldsymbol{z}) \propto p(\boldsymbol{z} \mid \boldsymbol{x}) p(\boldsymbol{x})$$

où $p(\boldsymbol{x}) = \prod_{n=1}^{N} p_{\mathsf{HT}}(x_n)$ est la distribution *a priori* de \boldsymbol{x}
 \updownarrow

Moindres carrés pénalisés

minimiser
$$J(\boldsymbol{x}) = \|\boldsymbol{z} - \boldsymbol{h} \star \boldsymbol{x}\|^2 + \mu \sum_{n=1}^N \phi(x_n)$$

où $\phi = -\ln p_{\mathsf{HT}}$

- $\phi(x)$ croît plus lentement que x^2
- ϕ convexe \implies pas de minima locaux

Exemples de lois sur \mathbb{R}

Calcul de \hat{x} (minimisation de J)

φ différentiable
 Optimisation locale (*e.g.*, gradient conjugué)
 [Bertsekas 1995, Nocedal et Wright 1999]

solution "hyperbolique"

 φ_{L1}(x) = |x| : Problème "L2L1" Algorithmes plus spécifiques (homotopie, IT, ...) voir [IEEE Selected Topics in Signal Processing, Issue : Convex Optimization Methods, déc. 2007]

Alternative : modélisation de train d'impulsions

Processus composé (t_m, r_m) : t_m est un processus ponctuel qui commande l'apparition des événements, dont l'amplitude est distribuée suivant la loi du processus r_m .

+ amplitudes gaussiennes

Modèle Bernoulli-Gaussien

📘 Loi a priori

• q vecteur binaire indépendant $P(q_m = 1) = \lambda$ $P(q_m = 0) = 1 - \lambda$ \rightarrow $P(q) = \lambda^{M_1} (1 - \lambda)^{M_0}, M_0 + M_1 = M$ λ : « densité d'événements »

• *r* vecteur gaussien indépendant

L Calcul du MAP

• Problème de détection-estimation de type "L2L0" :

$$\mathcal{K}(q) = \min_{r} \| z - h \star r \|^2 + \mu \| r \|_2^2 + \beta \sum_{m} q_m \text{ avec } q_m = 1_{\{r_m \neq 0\}}$$

• Optimisation combinatoire

 $\boldsymbol{q} \in \{0,1\}^M$, soit 2^M possibilités \implies examen exhaustif impossible

 \rightsquigarrow Algorithmes « sous-optimaux » itératifs : $q^j \rightarrow q^{j+1} \dots \rightarrow q^J = \hat{q}$ Méthode de parcours : *Single Most Likely Replacement* (SMLR) [Mendel 1983]

$$\begin{array}{ccc} \boldsymbol{q}^{j} & \longrightarrow & \boldsymbol{q}^{j+1} = \left\{ \begin{array}{c} \text{meilleure} \\ \text{séquence} \\ \text{voisine} \end{array} \right\} \longrightarrow \underbrace{\mathcal{K}(\boldsymbol{q}^{j+1}) < \mathcal{K}(\boldsymbol{q}^{j}) ?}_{\text{oui}} & \stackrel{\text{non}}{\longrightarrow} & \widehat{\boldsymbol{q}} = \boldsymbol{q}^{j} \\ & & & \\$$

Résultats

L2L1 ou L2L0?

Formulation L2L1, L2Lhyp, etc

- Modèle plus grossier
- Problème convexe \rightsquigarrow solution exacte
- Solution continue en fonction des données [Bouman et Sauer 1993]
- Adaptée à l'aide au diagnostic

Formulation L2L0

- Modélisation plus « exacte » mais solution approchée
- Solution discontinue en fonction des données
- Adaptée à la décision automatique

(e.g., application en IRMf, cf. Ph. Ciuciu)

- I. Généralités
- II. Déconvolution de train d'impulsions

III. Restauration d'image et optimisation Modèle pour les images ? Modèles markoviens, analyse/synthèse Critères semi-quadratiques, approximations majorantes Formes tronquées, statégies de pas

IV. Problèmes aveugles, méthodes autodidactes Bibliographie

Introduction

Estimer x à partir de $oldsymbol{z} = \mathbf{H}\,oldsymbol{x} + oldsymbol{n}$, \mathbf{H} étant connue

 ${\bf H}$ est une matrice de convolution, donc Toeplitz par blocs à blocs Toeplitz

Exemple (bateau de pêche)

 \boldsymbol{z}

 $N = 512 \times 512$ PSF gaussienne ($\sigma = 2.24$ pixels) RSB 40dB

Ingrédients nécessaires :

- Problème mal posé \rightsquigarrow régularisation par pénalisation \rightsquigarrow modèle d'images?
- Algorithme d'optimisation adapté aux problèmes de grande taille

Modèles a priori pour les images

Modèles markoviens

→ Energie d'un champ de Markov aux plus proches voisins :

$$\Phi(\mathbf{x}) = \sum_{m,n} \phi(x_{m,n} - x_{m,n+1}) + \sum_{m,n} \phi(x_{m,n} - x_{m+1,n})$$

Préservation des discontinuités : ϕ associée à une loi à queue lourde, *e.g.*,

Charbonnier et coll. [1997]

Variante « variation totale »

$$\Phi(\boldsymbol{x}) = \sum_{m,n} \sqrt{(x_{m,n} - x_{m,n+1})^2 + (x_{m,n} - x_{m+1,n})^2}$$

Nondifférentiabilité \rightsquigarrow parcimonie, mais « marches d'escalier » [Nikolova 2004]

Les champs de Markov sont-ils des bons modèles?

- **X** La loi des différence entre pixels voisins n'est pas $c \exp \{-\phi(x)\}$
- X Aucun contrôle des propriétés au second ordre

 \neq modèle gaussien, *e.g.*, $DSP(\nu) = \frac{C}{\nu_0^p + \nu^p}$ [Kattnig et Primot 1997]

Comment imposer simultanément

- une structure de covariance spatiale,
- la loi marginale des pixels (ou des différences interpixels)?
- V OK malgré tout pour définir un « bon » estimateur $\widehat{x}(\mu)$ à μ fixé
- Et l'estimation de μ ?

Une expérience embarrassante

• Soit $\boldsymbol{z} = \boldsymbol{h} \star \boldsymbol{x}^* + \boldsymbol{b}$ dans deux cas différents :

Cas « réel » Cas « synthétique »

fonction de Huber ϕ_t

réalisation d'un champ de Markov-Huber

• Soit
$$\widehat{\boldsymbol{x}}^{MAP} = \operatorname*{arg\,min}_{\boldsymbol{x}} \left(\frac{1}{2\sigma^2} \| \boldsymbol{z} - \boldsymbol{h} \star \boldsymbol{x} \|^2 + \mu \sum_{r \sim s} \phi_t (x_r - x_s) \right)$$

Cas « réel »

Cas « synthétique »

Pseudo-vraisemblance (vraies valeurs de (μ, t) , PMV, MR1 et MR2 se confondent

Les choses se passent parfois mieux, e.g., Trillon et coll. [2008]

Approche « analyse » / Approche « synthèse » [Elad et coll. 2007]

Approche par « analyse » (champ de Markov)

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \left(\|\boldsymbol{z} - \mathbf{H}\boldsymbol{x}\|^2 + \mu \sum_{\ell=1}^{L} \phi(\alpha_{\ell}) \right)$$

avec $\boldsymbol{\alpha} = \mathbf{V}\boldsymbol{x} \in \mathbb{R}^L$ et $L \ge N$

Approche par « synthèse » (bases redondantes)

Frame d'ondelettes, représentation temps-fréquence, décomposition sur un dictionnaire :

$$\widehat{\boldsymbol{x}} = \mathbf{W}\widehat{\boldsymbol{\alpha}} \text{ avec } \boldsymbol{\alpha} \in \mathbb{R}^{L} \text{ ou } \mathbb{C}^{L/2}, L \gg N,$$
$$\widehat{\boldsymbol{\alpha}} = \arg\min_{\boldsymbol{\alpha}} \left(\|\boldsymbol{z} - \mathbf{H}\mathbf{W}\boldsymbol{\alpha}\|^{2} + \mu \sum_{\ell=1}^{L} \phi(\alpha_{\ell}) \right)$$

et ϕ est préférentiellement non différentiable pour créer de la parsimonie

Optimisation de critères pénalisés : Approximations majorantes pour la restauration d'image

Contexte markovien

$$\widehat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \mathcal{J}(\boldsymbol{x}) = \|\boldsymbol{z} - \mathbf{H}\boldsymbol{x}\|^2 + \mu \sum_{c \in \mathcal{C}} \phi(\boldsymbol{v}_c^{\mathrm{t}} \boldsymbol{x})$$

e.g., $v_c^t x = x_r - x_s$, $c = \{r, s\}$: paires de pixels voisins horizontaux ou verticaux

• Préservation des discontinuités $\rightsquigarrow \phi$ non quadratique

Algorithmes semi-quadratiques

Origine : modèles composites et variables binaires de contours [Blake et Zisserman 1987, Jeng et Woods 1991]

e.g.,
$$\Psi(\boldsymbol{x}, \boldsymbol{\ell}) = \sum_{r \sim s} (1 - \ell_{rs}) (x_r - x_s)^2 + \alpha \sum_{r \sim s} \ell_{rs}$$

•
$$\mathcal{K}(\boldsymbol{x}, \boldsymbol{\ell}) = \|\boldsymbol{z} - \mathbf{H}\boldsymbol{x}\|^2 + \mu \Psi(\boldsymbol{x}, \boldsymbol{\ell})$$
 est semi-quadratique (SQ)

•
$$\min_{\boldsymbol{x},\boldsymbol{\ell}} \mathcal{K}(\boldsymbol{x},\boldsymbol{\ell}) = \min_{\boldsymbol{x}} \left(\|\boldsymbol{z} - \mathbf{H}\boldsymbol{x}\|^2 + \mu \Phi(\boldsymbol{x}) \right)$$

avec $\Phi(\boldsymbol{x}) = \sum_{r \sim s} \phi(x_r - x_s), \quad \phi(x) = \min \left\{ \alpha, x^2 \right\}$
quadratique tronquée

Algorithme SQ = Minimisation alternée d'un critère composite \mathcal{K} Extension à d'autres fonctions ϕ ? Geman et Reynolds [1992], Geman et Yang [1995]

 $r \cap || \cap || \cap$

 $s \bigcirc \square \bigcirc \square \bigcirc$

rs г

Deux variantes SQ

ARTUR/GR [Geman et Reynolds 1992]

LEGEND/GY [Geman et Yang 1995]

Remarques

 $\ell(\cdot)^2 + \psi(\ell)$ et $(\cdot - \ell)^2 + \zeta(\ell)$ sont quadratiques, majorantes et tangentes à ϕ De même, $\Psi(\cdot, \ell)$ est quadratique, majorante et tangente à Φ Approximations quadratiques majorantes (AMQ)

Ortega et Rheinboldt [1970], Voss et Eckhardt [1980]

Soit $\widehat{\mathcal{J}}_{\mathbf{B}}(\boldsymbol{x}', \boldsymbol{x}) = \mathcal{J}(\boldsymbol{x}) + (\boldsymbol{x}' - \boldsymbol{x})^{\mathrm{t}} \nabla \mathcal{J}(\boldsymbol{x}) + (\boldsymbol{x}' - \boldsymbol{x})^{\mathrm{t}} \mathbf{B}(\boldsymbol{x}) (\boldsymbol{x}' - \boldsymbol{x})/2$

Supposons qu'il existe $\mathbf{B}(\cdot) > 0$ tel que $\widehat{\mathcal{J}}_{\mathbf{B}}(\mathbf{x}', \mathbf{x}) \ge \mathcal{J}(\mathbf{x}'), \quad \forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^N$ Alors :

•
$$\widehat{\mathcal{J}}_{\mathbf{B}}({m{x}},{m{x}})=\mathcal{J}({m{x}})$$
 ,

- $\mathbf{B}_{\mathsf{GY}} = 2\mathbf{H}^{\mathsf{t}}\mathbf{H} + \mu\mathbf{V}^{\mathsf{t}}\mathbf{V}, \quad \mathbf{V} = [\boldsymbol{v}_1|...|\boldsymbol{v}_C]^{\mathsf{t}}$
- $\mathbf{B}_{\mathsf{GR}}(\boldsymbol{x}) = 2\mathbf{H}^{\mathsf{t}}\mathbf{H} + \mu \mathbf{V}^{\mathsf{t}}\mathbf{L}(\boldsymbol{x})\mathbf{V}, \quad \mathbf{L}(\boldsymbol{x}) = \operatorname{Diag}\left\{\phi'(\boldsymbol{v}_{c}^{\mathsf{t}}\boldsymbol{x})/\boldsymbol{v}_{c}^{\mathsf{t}}\boldsymbol{x}\right\}$

Bref historique

• Approche markovienne en restauration d'image [Geman et Reynolds 1992, Geman et Yang 1995, Charbonnier *et coll.* 1997]

Algorithmes SQ : ARTUR / GR, LEGEND / GY

- Régression robuste [Beaton et Tukey 1974, Byrd et Payne 1979, Huber 1981] $\min_{\boldsymbol{x}} \sum_{n=1}^{N} \phi(y_n - \boldsymbol{h}_n^{\mathrm{t}} \boldsymbol{x}) \quad \rightsquigarrow \quad \textit{moindres carrés repondérés} : \text{IRLS, RSD}$
- Cas non différentiables
- Problème de Fermat-Weber : $\min_{\boldsymbol{x}} \sum_{n=1}^{N} \|\boldsymbol{y}_n \boldsymbol{x}\|_2$ [Weiszfeld 1937] - Dictionnaires et parcimonie : $\min_{\boldsymbol{x}} \left(\|\boldsymbol{z} - \mathbf{H}\mathbf{W}\boldsymbol{x}\|^2 + \mu \|\boldsymbol{x}\|_p^p \right), \quad p \leq 1$ FOCUSS [Gorodnitsky et Rao 1997, Rao *et coll.* 2003]; voir aussi Fuchs [2007]

IRLS = ARTUR / GR = FOCUSS = WeiszfeldRSD = LEGEND /GY

Applicabilité en restauration d'image

X Sauf cas particulier, le coût par itération explose quand N croît!

Variante 1 [Charbonnier *et coll.* 1997, Nikolova et Ng 2005] Calcul approché de $\mathbf{B}^{-1}(x_k)\nabla \mathcal{J}(x_k)$ par GC (préconditionné) : **SQ+GC**

Variante 2 [Fessler et Booth 1999]

Algorithme GC non linéaire (préconditionné) + SQ scalaire : GCNL+SQ1D

... mais SQ+GC et GCNL+SQ1D ne sont pas des algorithmes AMQ

Variante 1 : SQ+GC

Principe

$$egin{array}{rcl} m{x}_{k+1} &=& m{x}_k + m{d}_k \ m{d}_k &=& m{u}_{I_k}(m{x}_k) \end{array}$$

où $u_I(x)$ est la solution après I itérations de GC(P) appliquées à ${f B}(x) \, u = -
abla {\cal J}(x)$

Questions ouvertes

• Comment choisir
$$I_k$$
? Tel que $\frac{\|\text{résidu}_{I_k}\|}{\|\text{résidu}_0\|} \leq \varepsilon$, e.g., $\varepsilon = 10^{-6}$?

• Convergence ?

$$\forall I_k \ge 1, \lim_{k \to \infty} \nabla \mathcal{J}(\boldsymbol{x}^k) = \boldsymbol{0}$$
 [Labat et Idier 2007]

Problème simulé (bateau de pêche)

Variante 2 : GCNL+SQ1D

Principe

$$egin{array}{lll} m{d}_k &=& -\mathbf{M}^{-1}
abla \mathcal{J}(m{x}_k) + eta_k m{d}_{k-1} \ m{x}_{k+1} &=& m{x}_k + lpha_k m{d}_k \end{array}$$

 $\mathbf{M} > 0$: matrice de préconditionnement

Statégies de pas

- 1. Pas constant $\alpha_k = \theta$: pas de garantie de convergence
- 2. Recherche de pas classique : dichotomie, interpolation, \dots + conditions de Wolfe
- 3. Minimisation de $f(\alpha) = \mathcal{J}(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$ (I_k sous-itérations) [Fessler et Booth 1999]
 - Comment choisir I_k ? $I_k = 5$?

• Convergence ?

 $\forall I_k \ge 1$, $\liminf_{k \to \infty} \nabla \mathcal{J}(\boldsymbol{x}^k) = \mathbf{0}$ (Polak-Ribière, ...) [Labat et Idier 2008]

Problème simulé (bateau de pêche)

Bilan comparatif

	préconditionnement	
	non	oui
GR+GC	194,3 s	87,9 s
CG+GR1D	110,7 s	46,9 s
CG+Wolfe	175,5 s	53,3 s
SQ exact	>2000 s	

Conclusions

Adaptation des algorithmes SQ aux problèmes de grande taille

- Algorithmes de Newton inexact tronqué
- Algorithmes de gradient conjugué sans recherche de pas

Pas d'algorithme emboîté : simplicité + faible coût par itération + convergence

Typologie d'algorithmes de minimisation par approximation majorante

- AM : approximation majorante
 - [Lange et coll. 2000, Vaida 2005]
 - = minimize-maximize
 - = iterative majorization
 - = optimization transfer
- EM : expectation maximization
- AMQ : AM quadratique
- AMS : AM séparable
- IT : iterative thresholding

GCNL+AM1D : Critères à barrière logarithmique

- Tomographie par émission de positons
- Pénalisation par maximum d'entropie
- Algorithmes de points intérieurs (contraintes inégalités, non différentiabilité)

- I. Généralités
- II. Déconvolution de train d'impulsions
- **III.** Restauration d'image et optimisation

IV. Problèmes aveugles, méthodes autodidactes

Obstacle informationnel, obstacle technique Méthodes de Monte-Carlo par chaîne de Markov (MCMC) Application : déconvolution aveugle et autodidacte de train d'impulsions Echantillonnage inspiré par l'optimisation

Bibliographie

Généralités
73/97

Introduction

Problèmes aveugles

i.e., l'opérateur \mathbf{H} du problème direct contient des inconnues

e.g., la déconvolution aveugle : h est inconnu

Problèmes autodidactes

On souhaite un réglage automatique des hyperparamètres e.g., du paramètre de régularisation μ

Deux obstacles

- Obstacle « informationnel » :
- Obstacle « technique » :
- Y a-t-il un espoir de solution exploitable? Comment calculer cette solution? simulation bayésienne (méthodes MCMC)

Obstacle informationnel : exemple en déconvolution aveugle

Il existe une infinité de solutions équivalentes !

- Retards, changement d'échelle
- Déphasages
- Contenu fréquentiel

Obstacle technique : quel estimateur calculer ?

Diverses approches non bayésiennes

i.e., exploitent seulement la statistique de $p(\pmb{z} \,|\, \pmb{x}, \pmb{h}, \pmb{\theta})$

- Adéquation aux données : trouver μ tel que $\|\boldsymbol{z} \mathbf{H}\hat{\boldsymbol{x}}_{\mu}\|^2 = N\sigma^2$ (tendance sous-régularisante)
- courbe en L
- validation croisée
- minimum description length (MDL), Akaike information criterion (AIC), ...
- estimateur de Stein

MAP joint

Maximiser
$$p(\boldsymbol{x}, \boldsymbol{h}, \boldsymbol{\theta} \,|\, \boldsymbol{z})$$
 par rapport à $(\boldsymbol{x}, \boldsymbol{h}, \boldsymbol{\theta})$

- Extension simple de la minimisation de critère pénalisé, *e.g.*, $\underset{\boldsymbol{x},\boldsymbol{h}}{\operatorname{arg\,min}} \|\boldsymbol{z} - \boldsymbol{h} \star \boldsymbol{x}\|^{2} + \mu_{x} \Phi_{x}(\boldsymbol{x}) + \mu_{h} \Phi_{h}(\boldsymbol{h})$
- Biais asymptotique, voire dégénescence [Little et Rubin 1983, Gassiat *et coll.* 1992]
- Parfois fonctionnel...

Moindres carrés conjoints en diversité de phase [Gonsalves et Chidlaw 1979]

$$\boldsymbol{z}_k = \boldsymbol{h}_k \star \boldsymbol{x} + \boldsymbol{b}_k, \ k = 1, \ldots, K$$

avec $m{h}_k = m{h}(m{ heta}_k)$ et $m{ heta}_k = m{ heta} + m{\delta}_k$, $m{\delta}_k$ connus, $m{ heta}$ inconnu

• Moindres carrés **conjoints**

$$(\widehat{oldsymbol{x}},\widehat{oldsymbol{ heta}}) = \min_{oldsymbol{x},oldsymbol{ heta}} \sum_k \|oldsymbol{z}_k - oldsymbol{h}_k \star oldsymbol{x}\|^2 + \mu \,\|\mathbf{F}oldsymbol{x}\|$$

• Propriété : Si K > 1, taille $(x) \to \infty$, $\mu \to 0$ et des hypothèses « minimales », alors $\hat{\theta}$ est asymptotiquement sans biais !

 $(\widehat{\theta} \text{ est un estimateur à minimum de contraste [Idier$ *et coll.*2005])

 $h = |TF(A \exp(i\theta)|^2$, fonction non linéaire de θ ! A : fonction d'ouverture de la pupille θ : paramètres de la phase aberrante δ_k : paramètres de défocalisation

Estimateurs marginaux

Construire \hat{h} et $\hat{\theta}$ à partir de $p(h, \theta | z) = \int p(x, h, \theta | z) dx$ $\rightarrow \text{EM}$, SEM, variational Bayes EM (rapport *nb de données/nb d'inconnues* favorable), puis estimer x sachant z, \hat{h} et $\hat{\theta}$ 78/97

Construire \hat{x} à partir de $p(\boldsymbol{x} | \boldsymbol{z}) = \int \int p(\boldsymbol{x}, \boldsymbol{h}, \boldsymbol{\theta} | \boldsymbol{z}) d\boldsymbol{h} d\boldsymbol{\theta}$ (*i.e.*, intégrer les paramètres de nuisance hors du problème) \sim Méthodes de Monte-Carlo par chaîne de Markov (MCMC) Méthodes MCMC

Méthodes de Monte-Carlo par chaîne de Markov (MCMC) [Liu 2001]

Elles permettent le calcul d'estimateurs marginaux tels que l'espérance a posteriori

$$E[\boldsymbol{x} \mid \boldsymbol{z}] = \int \boldsymbol{x} p(\boldsymbol{x} \mid \boldsymbol{z}) d\boldsymbol{x} = \int \boldsymbol{x} p(\boldsymbol{x}, \boldsymbol{h}, \boldsymbol{\theta} \mid \boldsymbol{z}) d\boldsymbol{x} d\boldsymbol{h} d\boldsymbol{\theta}$$

1) Choisir
$$\boldsymbol{x}_0$$
, \boldsymbol{h}_0 , $\boldsymbol{\theta}_0$ arbitrairement;
2) pour $k = 1, ..., K$,
- tirer au hasard $\boldsymbol{x}^{(k)}$ selon $p(\boldsymbol{x} \mid \boldsymbol{h}^{(k-1)}, \boldsymbol{\theta}^{(k-1)}, \boldsymbol{z}) \propto p(\boldsymbol{x}, \boldsymbol{h}^{(k-1)}, \boldsymbol{\theta}^{(k-1)} \mid \boldsymbol{z})$
- tirer au hasard $\boldsymbol{h}^{(k)}$ selon $p(\boldsymbol{h} \mid \boldsymbol{x}^{(k)}, \boldsymbol{\theta}^{(k-1)}, \boldsymbol{z}) \propto p(\boldsymbol{x}^{(k)}, \boldsymbol{h}, \boldsymbol{\theta}^{(k-1)} \mid \boldsymbol{z})$
- tirer au hasard $\boldsymbol{\theta}^{(k)}$ selon $p(\boldsymbol{\theta} \mid \boldsymbol{x}^{(k)}, \boldsymbol{h}^{(k)}, \boldsymbol{z}) \propto p(\boldsymbol{x}^{(k)}, \boldsymbol{h}^{(k)}, \boldsymbol{\theta} \mid \boldsymbol{z})$
3) Calculer $\hat{\boldsymbol{x}} = \frac{1}{K} \sum_{k=1}^{K} \boldsymbol{x}^{(k)}$

- La suite aléatoire $(\boldsymbol{x}_0, \boldsymbol{h}_0, \boldsymbol{\theta}_0), (\boldsymbol{x}_1, \boldsymbol{h}_1, \boldsymbol{\theta}_1), \ldots$ est une chaîne de Markov
- Aspect « Monte-Carlo » : on approche $E[f(\boldsymbol{x}, \boldsymbol{h}, \boldsymbol{\theta} \,|\, \boldsymbol{z})]$ par $\frac{1}{K} \sum_{k=1}^{K} f(\boldsymbol{x}^{(k)}, \boldsymbol{h}^{(k)}, \boldsymbol{\theta}^{(k)})$

Propriétés

Convergence en loi

Si $\{X^{(k)}\}_{k\in\mathbb{N}}$ une chaîne de Markov homogène « ergodique » (irréductible récurrente positive de période 1) dont le noyau de transition φ vérifie la *condition d'équilibre*

$$\varphi(\boldsymbol{x}' \,|\, \boldsymbol{x}) \, p(\boldsymbol{x}) = \varphi(\boldsymbol{x} \,|\, \boldsymbol{x}') \, p(\boldsymbol{x}') \tag{CE}$$

alors la densité de probabilité de $X^{(\infty)}$ est p.

Loi des grands nombres

si
$$\operatorname{E}_p[f^2] < \infty$$
, $\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^K f(\boldsymbol{x}^{(k)}) = \operatorname{E}_p[f]$ p.s.

Principe de l'augmentation de données

$$\{\boldsymbol{X}^{(k)},\,\Theta^{(k)}\} \sim p(\boldsymbol{x},\,\theta\,|\,\boldsymbol{z}) \implies \begin{cases} \Theta^{(k)} \sim p(\theta\,|\,\boldsymbol{z}) = \int p(\boldsymbol{x},\,\theta\,|\,\boldsymbol{z}) \,\mathrm{d}\boldsymbol{x} \\ \boldsymbol{X}^{(k)} \sim p(\boldsymbol{x}\,|\,\boldsymbol{z}) = \int p(\boldsymbol{x},\,\theta\,|\,\boldsymbol{z}) \,\mathrm{d}\theta. \end{cases}$$

82/97

Echantillonneurs de Gibbs et de Metropolis-Hastings

On souhaite générer des échantillons de p(x), $x = (x_1, \ldots, x_N)$ en enchaînant des « mouvements » satisfaisant la condition d'équilibre (CE)

Echantillonneur de Gibbs [Geman et Geman 1984]

Pour $n = 1, \ldots, N$, tirer x_n au hasard suivant $p(x_n | x_1, \ldots, x_{n-1}, x_{n+1} \ldots)$

Echantillonneur de Metropolis-Hastings [Hastings 1970]

- () Configuration courante : x
- ① Proposer \boldsymbol{x}' par échantillonnage d'un *noyau de proposition* $q(\boldsymbol{x}' \,|\, \boldsymbol{x})$
- (2) $P(\mathbf{x}' \text{ remplace } \mathbf{x}) = \min \left\{ 1, \frac{p(\mathbf{x}')}{p(\mathbf{x})} \frac{q(\mathbf{x} \mid \mathbf{x}')}{q(\mathbf{x}' \mid \mathbf{x})} \right\};$ retour en (0) pour l'itération suivante

Cas particuliers classiques :

- -x' = x + perturbation (marche aléatoire)
- Echantillonneur de Gibbs

Quantités calculables par MCMC

Estimateurs à coût bayésien séparable

Si
$$C(oldsymbol{x},oldsymbol{x}^*) = \sum_n c_n(x_n,x_n^*)$$
, alors

$$\min_{\widehat{\boldsymbol{x}}} \mathbb{E}[C(\widehat{\boldsymbol{x}}(\boldsymbol{z}), \boldsymbol{x}^*)] = \sum_{n} \min_{\widehat{x}_n} \mathbb{E}[c_n(\widehat{x}_n(\boldsymbol{z}), x_n^*)] \approx \sum_{n} \min_{\widehat{x}_n} \frac{1}{K} \sum_{k=1}^K c_n(\widehat{x}_n(\boldsymbol{z}), x_n^{(k)})$$

à minimiser composante par composante analytiquement (EAP) ou numériquement (MAPM)

estimateur	$C(oldsymbol{x},oldsymbol{x}^*)$	séparabilité
MAP	$-\delta(oldsymbol{x}-oldsymbol{x}^*)$	non
EAP	$\left\ oldsymbol{x}-oldsymbol{x}^{*} ight\ ^{2}$ (risque quadratique)	oui
MAP marginal	$-\sum_m \delta(x_m - x_m^*)$	oui
ELMQ	$\left\ oldsymbol{x}-oldsymbol{x}^{*} ight\ ^{2}$ sous contrainte de linéarité	oui

Covariance a posteriori (barres d'erreur, etc)

$$\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} (\boldsymbol{x}^{(k)} - \widehat{\boldsymbol{x}}) (\boldsymbol{x}^{(k)} - \widehat{\boldsymbol{x}})^{\mathrm{t}} = \mathrm{Cov}(\boldsymbol{x} \mid \boldsymbol{z})$$

Calcul d'évidences (choix de modèles)

$$p(\boldsymbol{z} \mid \mathcal{M}) = \int p(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{h}, \boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{x} \, \mathrm{d}\boldsymbol{h} \, \mathrm{d}\boldsymbol{\theta}$$
 [Chib 1995]

Estimation MAP : principe du recuit simulé [Geman et Geman 1984]

Si la loi instantanée de
$$\{X^{(k)}\}$$
 est $p_{T(k)}(\boldsymbol{x} | \boldsymbol{z})$, avec $T(k) \searrow 0$ et
 $p_T(\boldsymbol{x} | \boldsymbol{z}) \propto (p(\boldsymbol{x} | \boldsymbol{z}))^{1/T}$, alors : $\lim_{T \to 0} p_T(\boldsymbol{x} | \boldsymbol{z}) = \delta_{\widehat{\boldsymbol{X}}^{MAP}}(\boldsymbol{x})$
 $p_4(x)$ $p_2(x)$ $p(x)$ $p(x)$ $p_{1/2}(x)$ $p_{1/5}(x)$

Application :

déconvolution aveugle et autodidacte de train d'impulsions

Application « directe » d'une méthode MCMC [Cheng et coll. 1996]

• Modèle *a priori*

- $m{x} = (m{q},m{r})$ modèle Bernoulli-gaussien, paramètres : λ , σ^2
- $m{h}$ a priori gaussien centré « non informatif », paramètre : σ_h^2
- $\pmb{\theta} = (\lambda, \sigma^2, \sigma_h^2, \sigma_b^2)$: a priori conjugués non informatifs
- Echantillonneur de Gibbs

$$(x_1,\ldots,x_M,\boldsymbol{h},\lambda,\sigma^2,\sigma_h^2,\sigma_b^2)$$

• Estimation

$$\begin{split} & - \widehat{q}^{\text{MMAP}} \text{ (vote majoritaire composante par composante)} \\ & - \widehat{r}_m = 0 \text{ si } \widehat{q}_m = 0, \ \widehat{r}_m = \sum r_m^{(k)} / \sum q_m^{(k)} \text{ sinon} \\ & - h^{\text{EAP}} \\ & - \theta^{\text{EAP}} \end{split}$$

87/97

Reproductibilité imparfaite...

Trois types de problèmes

Problème 1 : « Piégage » [Labat 2006, Ge et coll. 2008]

- Rareté des transitions de type $(h, x) \iff (retard \star h, retard^{-1} \star x)$

— Rareté des transitions de type $x_1 \nleftrightarrow x_2$

Analogie avec le problème des solutions locales en minimisation \sim Labat [2006], Ge *et coll.* [2008] : ajout de mouvements spécifiques

Problème 2 : Définition des estimateurs

$$- p(\boldsymbol{x}, \boldsymbol{r}, \boldsymbol{h}, \boldsymbol{\theta} \,|\, \boldsymbol{z}) = p(\boldsymbol{q}, -\boldsymbol{r}, -\boldsymbol{h}, \boldsymbol{\theta} \,|\, \boldsymbol{z}) \implies \operatorname{E}[\boldsymbol{h} \,|\, \boldsymbol{z}] = \boldsymbol{0} \;!$$

$$- p(\textit{retard} \star \boldsymbol{x}, \textit{retard}^{-1} \star \boldsymbol{h}, \boldsymbol{\theta} \,|\, \boldsymbol{z}) \approx p(\boldsymbol{x}, \boldsymbol{h}, \boldsymbol{\theta} \,|\, \boldsymbol{z})$$

Problèmes voisins de l'« échange d'étiquettes » (*label switching*) dans le cas des mélanges de population [Stephens 2000])

A résoudre par tri des échantillons suivant un critère de similarité [Labat 2006]

Problème 3 : Lenteur d'évolution

Evolution de l'échelle, *i.e.*, exploration des configurations (sh, x/s) en fonction de s

 \rightsquigarrow Veit *et coll.* [2008] : ajout de mouvements spécifiques

Problème 3 : Lenteur d'évolution → Echantillonnage inspiré par l'optimisation

 \rightarrow Echantillonneur exploitant la structure locale de l'énergie (gradient, Hessien)?

Echantillonneur de Langevin-Hastings [Neal 1993, Besag 2001]

• Diffusion de Langevin

 $d\boldsymbol{x}(t) = -\nabla \mathcal{J}(\boldsymbol{x}(t)) dt + \sqrt{2} d\boldsymbol{w}(t)$

avec $p({\bm x}) \propto \exp(-\mathcal{J}({\bm x})), \ {\bm w}(t)$ processus brownien vectoriel Propriété : ${\bm x}$ converge en loi vers p

- Echantillonneur de Langevin-Hastings
 - = Echantillonneur de Metropolis-Hastings avec loi de proposition obtenue par diffusion de Langevin discrétisée :

$$oldsymbol{x}' = oldsymbol{x} - au
abla \mathcal{J}(oldsymbol{x}) + oldsymbol{z} \sqrt{2 au}, \quad oldsymbol{z} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I})$$

= Descente de gradient à pas fixe « perturbée »

• Version préconditionnée?

= Version de base après un changement de variable $\boldsymbol{y} = \mathbf{P}^{t}\boldsymbol{x}$ (typiquement, $\mathbf{PP}^{t} \approx (\nabla_{\boldsymbol{x}}^{2}\mathcal{J})^{-1}$) $\boldsymbol{\zeta}$ $\boldsymbol{x}' = \boldsymbol{x} - \tau \mathbf{P}^{-1}\mathbf{P}^{-t}\nabla \mathcal{J}(\boldsymbol{x}) + \mathbf{P}^{-1}\boldsymbol{z}\sqrt{2\tau}, \quad \boldsymbol{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$\text{Par exemple}: \mathbf{P} = \left\{ \begin{array}{ll} \text{Cholesky}((\nabla^2_{\bm{x}}\mathcal{J})^{-1}) & \text{si}\,\nabla^2_{\bm{x}}\mathcal{J} > 0\\ \text{diag}(\text{diag}((\nabla^2_{\bm{x}}\mathcal{J})^{-1})^{1/2}) & \text{sinon} \end{array} \right.$$

• Perspective : échantillonnage de vecteurs gaussiens

Alternative classique :

B Echantillonnage exact par factorisation LU de la covariance

Ber Echantillonneur de Gibbs

Perspective :

Ber Echantillonneur de Langevin-Hastings préconditionné (par LU tronqué?)

- [Beaton et Tukey 1974] A. E. Beaton et J. W. Tukey. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. *Technometrics*, 16 : 147–185, 1974.
- [Bertsekas 1995] D. P. Bertsekas. *Nonlinear Programming*. Athena Scientific, Belmont, MA, USA, 1995.
- [Besag 2001] J. Besag. Markov chain monte carlo for statistical inference. Working Paper 9, Center for Statistics and the Social Sciences, Univ. of Washington, USA, 2001.
- [Blake et Zisserman 1987] A. Blake et A. Zisserman. *Visual reconstruction*. The MIT Press, Cambridge, MA, USA, 1987.
- [Bouman et Sauer 1993] C. A. Bouman et K. D. Sauer. A generalized Gaussian image model for edge-preserving MAP estimation. *IEEE Transactions on Image Processing*, 2(3) : 296–310, juillet 1993.
- [Brézis 1983] H. Brézis. Analyse fonctionnelle : théorie et applications. Masson, Paris, 1983.
- [Byrd et Payne 1979] R. H. Byrd et D. A. Payne. Convergence of the iteratively reweighted least squares algorithm for robust regression. Rapport Interne 313, The Johns Hopkins Univ., Baltimore, MD, USA, juin 1979.
- [Champagnat *et coll.* 2001] F. Champagnat, Y. Goussard, S. Gautier et J. Idier. Déconvolution impulsionnelle. In J. Idier, éditeur, *Approche bayésienne pour les problèmes inverses*, pages 115–138, Paris, novembre 2001. Traité IC2, Série traitement du signal et de l'image, Hermès.
- [Charbonnier *et coll.* 1997] P. Charbonnier, L. Blanc-Féraud, G. Aubert et M. Barlaud. Deterministic edge-preserving regularization in computed imaging. *IEEE Transactions on Image Processing*, 6(2): 298–311, février 1997.
- [Cheng et coll. 1996] Q. Cheng, R. Chen et T.-H. Li. Simultaneous wavelet estimation and deconvolution

of reflection seismic signals. *IEEE Transactions on Geoscience and Remote Sensing*, 34 : 377–384, mars 1996.

- [Chib 1995] S. Chib. Marginal likelihood from the Gibbs output. *Journal of Acoustical Society America*, 90 (432) : 1313–1321, 1995.
- [Chouzenoux *et coll.* 2009a] E. Chouzenoux, S. Moussaoui et J. Idier. A majorize-minimize line search algorithm for barrier function optimization. In *EUSIPCO*, Glasgow, UK, août 2009.
- [Chouzenoux et coll. 2009b] E. Chouzenoux, S. Moussaoui et J. Idier. A new line search method for barrier functions with strong convergence properties. Rapp. tech., IRCCyN, janvier 2009. http://hal.archives-ouvertes.fr/docs/00/39/18/18/PDF/Main.pdf.
- [Demoment 1989] G. Demoment. Image reconstruction and restoration : Overview of common estimation structure and problems. *IEEE Transactions on Acoustics, Speech and Signal Processing,* ASSP-37 (12) : 2024–2036, décembre 1989.
- [Elad *et coll.* 2007] M. Elad, P. Milanfar et R. Rubinstein. Analysis versus synthesis in signal priors. *Inverse Problems*, 23 (3) : 947–968, juin 2007.
- [Fessler et Booth 1999] J. A. Fessler et S. D. Booth. Conjugate-gradient preconditionning methods for shift-variant PET image reconstruction. *IEEE Transactions on Image Processing*, 8(5): 668–699, mai 1999.
- [Fuchs 2007] J.-J. Fuchs. Convergence of a sparse representations algorithm applicable to real or complex data. *IEEE Journal of Selected Topics in Signal Processing*, 1(4) : 598–605, décembre 2007. Issue : Convex Optimization Methods for Signal Processing.
- [Gassiat *et coll.* 1992] E. Gassiat, F. Monfront et Y. Goussard. On simultaneous signal estimation and parameter identification using a generalized likelihood approach. *IEEE Transactions on Information Theory*, 38 : 157–162, janvier 1992.

- [Ge et coll. 2008] D. Ge, J. Idier et E. Le Carpentier. A new MCMC algorithm for blind Bernoulli-Gaussian deconvolution. In EUSIPCO, Lausanne, Suisse, août 2008.
- [Geman et Reynolds 1992] D. Geman et G. Reynolds. Constrained restoration and the recovery of discontinuities. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(3): 367–383, mars 1992.
- [Geman et Yang 1995] D. Geman et C. Yang. Nonlinear image recovery with half-quadratic regularization. *IEEE Transactions on Image Processing*, 4(7): 932–946, juillet 1995.
- [Geman et Geman 1984] S. Geman et D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-6(6): 721–741, novembre 1984.
- [Gonsalves et Chidlaw 1979] R. A. Gonsalves et R. Chidlaw. Wavefront sensing by phase retrieval. In A. Tescher, éditeur, *Applications of digital image processing III*, pages 32–39. SPIE 207, 1979.
- [Gorodnitsky et Rao 1997] I. F. Gorodnitsky et B. D. Rao. Sparse signal reconstruction from limited data using focuss : a re-weighted minimum norm algorithm. *IEEE Transactions on Signal Processing*, 45 (3) : 600–616, mars 1997.
- [Hadamard 1902] J. Hadamard. Sur les problèmes aux dérivées partielles et leur signification physique. *Princeton Univ. Bull.*, 13 : 49–52, 1902.
- [Hansen 1992] P. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. *SIAM Review*, 34 : 561–580, 1992.
- [Harrington 1987] R. F. Harrington. The method of moments in electromagnetics. *Journal of Electro-magnetic Waves and Applications*, 1(3): 181–200, 1987.
- [Hastings 1970] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57 : 97, janvier 1970.

- [Hebert et Leahy 1989] T. Hebert et R. Leahy. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. *IEEE Transactions on Medical Imaging*, 8(2): 194–202, juin 1989.
- [Huber 1981] P. J. Huber. Robust Statistics. John Wiley, New York, NY, USA, 1981.
- [Idier 2001] J. Idier, éditeur. Approche bayésienne pour les problèmes inverses. Traité IC2, Série traitement du signal et de l'image, Hermès, Paris, novembre 2001.
- [Idier *et coll.* 2005] J. Idier, L. Mugnier et A. Blanc. Statistical behavior of joint least square estimation in the phase diversity context. *IEEE Transactions on Image Processing*, 14 (12) : 2107–2116, décembre 2005.
- [Jeng et Woods 1991] F. C. Jeng et J. W. Woods. Compound Gauss-Markov random fields for image estimation. *IEEE Transactions on Signal Processing*, 39 (3) : 683–697, mars 1991.
- [Kattnig et Primot 1997] A. P. Kattnig et J. Primot. Model of the second-order statistic of the radiance field of natural scenes, adapted to system conceiving. In *Aeorosense'97 Visual information processing VI*, volume 3074, Washington DC, USA, 1997. SPIE.
- [Labat 2006] C. Labat. Algorithmes d'optimisation de critères pénalisés pour la restauration d'images. Application à la déconvolution de trains d'impulsions en imagerie ultrasonore. Thèse de doctorat, École Centrale de Nantes, décembre 2006.
- [Labat et Idier 2007] C. Labat et J. Idier. Convergence of truncated half-quadratic and Newton algorithms, with application to image restoration. Rapp. tech., IRCCyN, juin 2007.
- [Labat et Idier 2008] C. Labat et J. Idier. Convergence of conjugate gradient methods with a closed-form stepsize formula. *Journal of Optimization Theory and Applications*, 136(1): 43–60, janvier 2008.
- [Labat et coll. 2005] C. Labat, J. Idier, B. Richard et L. Chatellier. Ultrasonic nondestructive testing

based on 2D deconvolution. In *PSIP'2005 : Physics in signal and Image processing*, Toulouse, janvier 2005.

- [Lagendijk *et coll.* 1988] R. Lagendijk, J. Biemond et D. E. Boekee. Regularized iterative image restoration with ringing reduction. *IEEE Transactions on Acoustics, Speech and Signal Processing*, ASSP-36 : 1874–1888, 1988.
- [Lange *et coll.* 2000] K. Lange, D. R. Hunter et I. Yang. Optimization transfer using surrogate objective functions (with discussion). *Journal of Computational and Graphical Statistics*, 9(1) : 1–20, mars 2000.
- [Little et Rubin 1983] R. J. A. Little et D. B. Rubin. On jointly estimating parameters and missing data by maximizing the complete-data likelihood. *The American Statistician*, 37 : 218–220, août 1983.
- [Liu 2001] J. S. Liu. *Monte Carlo Strategies in Scientific Computing*. Springer Series in Statistics. Springer Verlag, New York, NY, USA, 2001.
- [Mendel 1983] J. M. Mendel. *Optimal Seismic Deconvolution*. Academic Press, New York, NY, USA, 1983.
- [Nashed 1981] M. Z. Nashed. Operator-theoretic and computational approaches to ill-posed problems with applications to antenna theory. *IEEE Transactions on Antennas and Propagation*, 29 : 220–231, 1981.
- [Neal 1993] R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Rapport Interne CRG-TR-93-1, Department of Computer Science, University of Toronto, http://www.cs.toronto.edu/ radford, septembre 1993.
- [Nikolova 2004] M. Nikolova. Weakly constrained minimization. Application to the estimation of images and signals involving constant regions. *Journal of Mathematical Imaging and Vision*, 21 (2) : 155–175, 2004.

- [Nikolova et Ng 2005] M. Nikolova et M. Ng. Analysis of half-quadratic minimization methods for signal and image recovery. *SIAM Journal on Scientific Computing*, 27 : 937–966, 2005.
- [Nocedal et Wright 1999] J. Nocedal et S. J. Wright. *Numerical optimization*. Springer Texts in Operations Research. Springer-Verlag, New York, NY, USA, 1999.
- [Ortega et Rheinboldt 1970] J. Ortega et W. Rheinboldt. *Iterative Solution of Nonlinear Equations in Several Variables*. Academic Press, New York, NY, USA, 1970.
- [Rao et coll. 2003] B. D. Rao, K. Engan, S. F. Cotter, J. Palmer et K. Kreutz-Delgado. Subset selection in noise based on diversity measure minimization. *IEEE Transactions on Signal Processing*, 51 (3): 760–770, mars 2003.
- [Stephens 2000] M. Stephens. Dealing with label-switching in mixture models. *Journal of the Royal Statistical Society B*, 62 : 795–809, 2000.
- [Tarantola et Valette 1982] A. Tarantola et B. Valette. Inverse problems = quest for information. Journal of Geophysics, 50 : 159–170, 1982.
- [Tikhonov et Arsénine 1976] A. Tikhonov et V. Arsénine. *Méthodes de résolution de problèmes mal posés*. Éditions MIR, Moscou, Russie, 1976.
- [Trillon *et coll.* 2008] A. Trillon, J. Idier et P. Peureux. Unsupervised Bayesian 3D reconstruction for non-destructive evaluation using gammagraphy. In *EUSIPCO*, Lausanne, Suisse, août 2008.
- [Vaida 2005] F. Vaida. Parameter convergence for EM and MM algorithms. *Statistica Sinica*, 15 : 831–840, 2005.
- [Veit *et coll.* 2008] T. Veit, J. Idier et S. Moussaoui. Rééchantillonnage de l'échelle dans les algorithmes MCMC pour les problèmes inverses bilinéaires. *Traitement du Signal*, 25 (4) : 329–343, 2008.

[Voss et Eckhardt 1980] H. Voss et U. Eckhardt. Linear Convergence of Generalized Weiszfeld's Method.

Computing, 25 : 243–251, 1980.

[Weiszfeld 1937] E. Weiszfeld. Sur le point pour lequel la somme des distances de *n* points donnés est minimum. *Tôhoku Mathematical Journal*, 43 : 355–386, 1937.

 \triangleleft

Lemme d'inversion de matrice

Soit \mathbf{A} $(N \times N)$; \mathbf{B} $(N \times M)$; \mathbf{C} $(M \times M)$; \mathbf{D} $(M \times N)$.

105/97

Sous réserve d'inversibilité,

$$(\mathbf{A} + \mathbf{B}\mathbf{C}\mathbf{D})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{B}(\mathbf{C}^{-1} + \mathbf{D}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{D}\mathbf{A}^{-1}$$

• Corrolaires

$$D(A + BCD)^{-1} = C^{-1}(C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$
$$CD(A + BCD)^{-1} = (C^{-1} + DA^{-1}B)^{-1}DA^{-1}$$

Matrices de convolution 2D

Convolution 2D et ordre lexicographique

Soit $\mathbf{Y} = \mathbf{h} \circledast \mathbf{X}$ pour la convolution 2D : $Y_{\ell,c} = \sum_{p} \sum_{q} h_{p,q} X_{\ell-p,c-q}$

Remarque 1 : plusieurs hypothèses de bord possibles Remarque 2 : convention « matricielle » (origine en haut à gauche)

Ordre lexicographique

Soit lex(**X**) =
$$\begin{bmatrix} ligne \ 1 \ en \ colonne \\ ligne \ 2 \ en \ colonne \\ \vdots \\ ligne \ L \ en \ colonne \end{bmatrix} \in \mathbb{R}^{LC \times 1} \text{ si } \mathbf{X} \in \mathbb{R}^{L \times C}$$

Alors $\mathbf{Y} = \mathbf{h} \circledast \mathbf{X}$ s'écrit aussi $y = \mathbf{H}x$ avec $y = \mathrm{lex}(\mathbf{Y})$ et $x = \mathrm{lex}(\mathbf{X})$

- Taille de \mathbf{H} : $N \times M$ avec M = LC et N de l'ordre de LC !
- Structure?

Matrices Toeplitz-bloc-Toeplitz

$$\mathbf{H} = \begin{bmatrix} \ddots & \ddots & \ddots & \ddots \\ \cdots & \mathbf{H}_{-1} & \mathbf{H}_0 & \mathbf{H}_1 & \cdots \\ & \cdots & \mathbf{H}_{-1} & \mathbf{H}_0 & \mathbf{H}_1 & \cdots \\ & & \ddots & \ddots & \ddots \end{bmatrix} \text{ avec } \mathbf{H}_p = \begin{bmatrix} \ddots & \ddots & \ddots & \ddots \\ \cdots & \mathbf{h}_{p,-1} & \mathbf{h}_{p,0} & \mathbf{h}_{p,1} & \cdots \\ & \cdots & \mathbf{h}_{p,-1} & \mathbf{h}_{p,0} & \mathbf{h}_{p,1} & \cdots \\ & & \ddots & \ddots & \ddots \end{bmatrix}$$

 $-\mathbf{H}_p: \textbf{matrice de Toeplitz} \text{ des coefficients des contributions} \\ \text{de la ligne } \ell + p \text{ de l'image } \mathbf{X} \text{ à la ligne } \ell \text{ de l'image } \mathbf{h} \circledast \mathbf{X}$

- H : matrice Toeplitz-bloc-Toeplitz (Toeplitz par bloc, à blocs Toeplitz)

Cas particuliers :

- convolution circulaire : H matrice circulante-bloc-circulante, diagonalisable dans la base de Fourier 2D
- -h symétrique et convolution miroir + circulaire : H diagonalisable par transformée en cosinus 2D

Algorithmes préconditionnés

• Correspond à l'algorithme de base après un changement de variable inversible $y = \mathbf{P}^{\mathrm{t}} x$

108/97

• Exemple : gradient conjugué, forme de Polak-Ribière préconditionnée

$$\boldsymbol{p}_{k} = -(\mathbf{M}_{k})^{-1} \nabla \mathcal{J}(\boldsymbol{x}^{k}) \qquad \text{(préconditionnement)} \qquad (1)$$

$$\beta_{k} = \begin{cases} 0 & \text{si } k = 0 \\ \frac{\left(\nabla \mathcal{J}(\boldsymbol{x}^{k}) - \nabla \mathcal{J}(\boldsymbol{x}^{k-1})\right)^{\text{t}} \boldsymbol{p}_{k}}{\left(\nabla \mathcal{J}(\boldsymbol{x}^{k-1})\right)^{\text{t}} \boldsymbol{p}_{k-1}} & \text{si } k > 0 \end{cases} \qquad (2)$$

$$\boldsymbol{d}_k = \boldsymbol{p}_k + \beta_k \boldsymbol{d}_{k-1} \tag{3}$$

 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k \qquad (\text{mise à jour}) \tag{4}$

$$(\mathbf{M}_k = \mathbf{P}_k^{-1} \mathbf{P}_k^{-\mathrm{t}})$$