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Agenda

• Recovery conditions based on number of 
nonzero components

• Question
! what is the order of magnitude of these numbers ?
! how do we estimate them in practice ?

• An element: 
! if A is m x N, then
! this is indeed an equality except for almost all 

matrices, in the sense of Lebesgue measure in 
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k*MP(A) ≤ k1(A) ≤ kp(A) ≤ kq(A) ≤ k0(A),∀A

‖x‖0

k0(A) ≤ "m/2#

RmN



Scenarios

• Range of  “choices” for the matrix A 
! imposed by physics of inverse problems (ex: 

convolution operator)
! chosen signal dictionary for sparse modeling (ex: 

union of wavelets + curvelets + spikes)
! designed Compressed Sensing matrix (ex: random 

Gaussian matrix)

• Estimation of the recovery regimes
! coherence for deterministic matrices
! typical results for random matrices
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Deterministic matrices 
and coherence

• Lemma
! Assume normalized columns
! Define coherence

! Consider index set I of size 
! Then for any coefficient vector

! In other words
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µ = max
i !=j

|AT
i Aj |

‖Ai‖2

!I ≤ k

1− (k − 1)µ ≤ ‖AIc‖22
‖c‖22

≤ 1 + (k − 1)µ

c ∈ RI

δ2k ≤ (2k − 1)µ



Consequence

• Since                               we obtain            
as soon as

• Combining with best known RIP condition 
for stable L1 recovery

• In fact, can prove with other techniques that
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δ2k ≤ δδ2k ≤ µ · (2k − 1)

δ ≈ 0.4531

k < (1 + δ/µ) /2

k1(A) ≥
⌊(

1 + 0.4531/µ
)
/2

⌋

k0(A) ≥ k1(A) ≥
⌊(

1 + 1/µ
)
/2

⌋
[G. Nielsen 2003]



Observation

• Assume the m x N matrix A has normalized 
columns and contains an orthonormal basis

• Then  its coherence is at least

• The bounds are therefore, at best, of the 
order
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µ ≥ 1√
m

⌊(
1 +

√
m

)
/2

⌋
≤ k1(A) ≤ k0(A) ≤

⌊
m/2

⌋



Example : Dirac-Fourier 
dictionary

• Fourier matrix in dimension

• Dirac comb is r-sparse

• Poisson formula

• Dictionary
! null space element                has r nonzero entries, 

all of equal magnitude.
! for k = r+1, and I a set with k nonzero entries of z:

! It follows that
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Fm =
1√
m

· (exp(−2iπkn))0≤k,n<m

Fmc = c

A = [Idm,−Fm]
z = [c, c]

m = r2

c[n] =
r−1∑

!=0

δ!r[n]

‖zI‖1 = r + 1 > ‖zIc‖1 = r − 1

k1(A) ≤ r =
√

m =
1
µ



Example: convolution 
operator

• Deconvolution problem

! re-expressed in matrix-vector form as
! A = Toeplitz or circulant matrix

! convention

! coherence: given by autocorrelation, can be large

! recovery results 
" worst case = close spikes, usually difficult and not robust 
" results assuming distance between spikes [Dossal]
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y = h !s + e

b = Ax + e
[A1, . . . ,AN ]

An(i) = h(i− n)

‖An‖2
2 =

∑

i

h(i)2 = 1

µ = max
n !=n′

AT
nAn′ = max

! !=0
h ! h̃(")



Example: source separation

• Time-domain model

• Time-frequency domain model (STFT)

• Minimum Lp solution [Bofill & Zibulevsky, Vincent] 

• Reconstruction (inverse STFT)

• 2x3 case (stereophonic, three sources)
! 1-dimensional null space, compute NSP constants
! instance optimality guarantees:
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b(t) = Ax(t),∀t

B(t, f) = AX(t, f),∀t, f

X̂(t, f) = arg min ‖X(t, f)‖p

x̂(t)

‖X̂(t, f)−X(t, f)‖ ≤ Cσ1(X(t, f))



Random matrix scenario
• Deterministic matrix, such as 

Dirac-Fourier dictionary

• Coherence

• “Generic” (random) dictionary 
[Candès & al, Vershynin, ...]

• Isometry constants

if

then

Am

N=2m

m

N

Recovery regimes
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A

x

kk

1√
m

e2iπnt/mδn(t)

µ = 1/
√

m

atn ∼ P (a), i.i.d.

m ≥ Ck log N/k

P (δ2k <
√

2− 1) ≈ 1

k1(A) ≈ 0.914
√

m
k1(A) ≈ m

2e log N/m

[Donoho & Tanner 2009][Elad & Bruckstein 2002]

with high
 probabilityk*MP(A) ≥ 0.5

√
m



Compressed sensing

• Approach = acquire some data y with a 
limited number m of (linear) measures, 
modeled by a measurement matrix

• Key hypotheses
! Sparse model: the data can be sparsely 

represented in some dictionary

! The overall matrix                   leads to robust + 
stable sparse recovery, e.g.

• Reconstruction = sparse recovery algorithm
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y ≈ Φx

b ≈ Ky

A = KΦ

σk(x) ! ‖x‖

δ2k(A)! 1



Compressed Sensing

• Sparse model:     (synthesis .... or analysis)
! should fit well the data, not always granted. E.g.: 

cannot aquire white Gaussian noise!
! require appropriate choice of dictionary, or 

dictionary learning from training data 

• Measurement matrix
! must be associated with physical sampling 

process (hardware implementation)
! should guarantee recovery from
! should ideally enable fast algorithms through fast 

computation of 
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Φ

K

KΦ

Ky,KT b



Example : Rice University  
Single Pixel Camera

single photon detector

Random pattern on DMD array image reconstruction
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Remarks

• Worthless if high-res. sensing+storage = cheap 

 i.e., not for your personal digital camera!

• Worth it whenever
! High-res. = impossible (no miniature sensor, e.g, certain 

wavelength)
! Cost of each measure is high

" Time constraints [fMRI]
" Economic constraints [well drilling]
" Intelligence constraints [furtive measures]?

! Transmission is lossy 
! (robust to loss of a few measures)
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Excessive pessimism ?



• Recoverable set for a given “inversion” 
algorithm

• Level sets of L0-norm

• Worst case 
= too pessimistic!

Recovery analysis
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b = Ax

‖x‖0 ≤ 1

{x = AlgoA(Ax)}

‖x‖0 ≤ k



• Recoverable set for a given “inversion” 
algorithm

• Level sets of L0-norm

• Worst case 
= too pessimistic!

• Finer “structures” of x

Recovery analysis
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b = Ax

{x = AlgoA(Ax)}

support(x), sign(x)
Borup, G. & Nielsen ACHA 2008, 
A = Wavelets U Gabor, recovery of infinite supports for analog signals



• Recoverable set for a given “inversion” 
algorithm

• Level sets of L0-norm

• Worst case 
= too pessimistic!

• Finer “structures” of x

• Average/typical case

Recovery analysis
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b = Ax

{x = AlgoA(Ax)}

G., Rauhut,, Schnass & Vandergheynst, JFAA 2008,  “Atoms of all channels, unite! Average case 
analysis of multichannel sparse recovery using greedy algorithms”.

support(x), sign(x)
Borup, G. & Nielsen ACHA 2008, 
A = Wavelets U Gabor, recovery of infinite supports for analog signals

‖x‖0 ≤ k



Average case analysis ?
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‖x0‖0

P (x! = x0) x!
p = arg min

Ax=Ax0
‖x‖p

p=1
p=1/2 p=0

x0 b := Ax0
direct model

inverse problem

Typical observation

k1(A) k1/2(A) k0(A)k1(A)



Average case analysis ?
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P = 1− ε, ε" 1

k1(A) k1/2(A) k0(A)k1(A)



Average case analysis ?
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‖x0‖0

P (x! = x0) x!
p = arg min

Ax=Ax0
‖x‖p

p=1
p=1/2 p=0

x0 b := Ax0P (x0)
draw ground truth direct model

inverse problem

Typical observation

Bayesian! Favorable priors?

C. Dossal (U. Bordeaux): 
algorithm to search for 
worst-case 

P = 1− ε, ε" 1

k1(A) k1/2(A) k0(A)k1(A)



The Bayesian bit: L1 
minimization and the 
Laplacian distribution



Bayesian modeling

• Observation : 

• “True” Bayesian model 

• Maximum likelihood estimation

• L1 minimization equivalent to MAP with Laplacian model

• Does L1 minimization fit Laplacian data ?

21

max
x

∏

k

P (xk)⇔ min
x

∑

k

f(|xk|)

b = Ax

P̂ (xk) ∝ exp(−|xk|)

P (xk) ∝ exp(−f(|xk|))



L1 minimization for 
Laplacian data ...

• Gaussian matrix

• Laplacian data, 500 draws

• Reconstruction L1 or L2
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x ∈ RN

N = 128

b = Ax

x!
p := arg min ‖x‖p, p = 1, 2 cf also Seeger and Nickish, ICML 2008

E‖x!
p − x‖2

2

A ∈ Rm×N
1 ≤ m ≤ 100

m

= ML with Laplacian / Gaussian prior
MAP is bad when the model fits the data!

Mikolova 2007, Inverse Problems and Imaging



Sparse recovery for 
Laplacian data ?

• Asymptotic analysis with “oracle” sparse estimation
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Sparse reconstruction better than min l
2
 at m/N=0.1488

Expected reconstruction error with min l
2

Expected best m!term approx error for Laplacian

Expected oracle k!term reconstruction error for Laplacian

Oracle sparsity level "=k/m for mean error reconstruction

A = Gaussianm

N
x
 =

 L
ap

la
ci

an

N →∞
work in progress, G. & Davies
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The end
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