
Pursuit Algorithms for Sparse Approximation

Rémi Gribonval
METISS project-team (audio signal processing, speech recognition, source separation)

INRIA, Rennes, France

Ecole d’été en Traitement du Signal
Peyresq, Juillet 2009

Overview

• Complexity of ideal sparse approximation

• Convex optimization

• Greedy algorithms

• Nonconvex optimization ?

2

Ideal sparse approximation

• Input:
m x N matrix A, with m < N, m-dimensional vector b

• Possible objectives:
find the sparsest approximation within tolerance

find best approximation with given sparsity

find a solution x to

3

arg min
x
‖x‖0, s.t.‖b−Ax‖ ≤ ε

arg min
x
‖b−Ax‖, s.t.‖x‖0 ≤ k

‖b−Ax‖ ≤ ε, and ‖x‖0 ≤ k

• Coefficient domain :
• set of sparse vectors

• Set = subspaces
in signal domain

• Ideal sparse approximation
= find nearest subspace
among

Geometric interpretation
of sparse approximation

4

‖x‖0 ≤ k

(
N

k

)

RN

subspaces

(
N

k

)

(
N

k

)

Combinatorial search!
Actual complexity ?

Σk

AΣk

Complexity

Complexity

• Polynomial algorithm: given input of size
N, compute output in cost poly(N)

• Polynomial problem (is in P): there is a
polynomial algorithm which can compute the
solution to each instance of the problem

• Example:
✦ problem: find the nearest neighbor to an m-

dimensional vector from a collection of N such
vectors

✦ input size = m x (N+1)
✦ complexity = O(Nm) [N distances in]

6

Rm

Complexity: NP

• Decision problem: of the type “does there
exist x satisfying a given set of constraints”

• Non-deterministic polynomial
decision problems (in NP): if there is a
polynomial algorithm which can check for any
instance of the problem if a candidate solution x
satisfies the constraint.

✤ warning: the algorithm is not required to find a solution. It merely
has to check if a solution x (given by an “oracle”) is acceptable.

7

Complexity: NP-complete

• Reduction: every instance of Problem A can be
transformed into an instance of Problem B in
polynomial time

• NP-hard problem: Problem B such that every
Problem A in NP can be reduced to B.

• NP-complete problems: NP-hard + in NP

• Fact: there exists at least one NP-complete
problem (satisfiability problem = SAT)

8

A “less complex” than B

Complexity of sparse
approximation

• Step 1: express it as a decision problem:
✦ description of an instance

m x N matrix A, m-dimensional vector b, parameters

✦ size of an instance = approximately mN
✦ decision problem: does there exists x such that

• Step 2: prove it is in NP. Indeed, one can check in
polynomial time O(mN) whether a given x
satisfies the constraints

• Step 3: reduce an existing problem to it to show
it is NP-complete

9

(ε, k)

‖b−Ax‖ ≤ ε, and ‖x‖0 ≤ k

NP-completeness of
sparse approximation

• Which known NP-complete problem?
Exact-cover by 3-sets

✦ Description of an instance:

✤ The integer interval
✤ A collection of subsets of size 3

✦ Decision problem:
✤ does there exist an exact cover (=disjoint partition) of E from

elements of C ?

10

[Davis & al 1997]
(other approach in [Natarajan 1995])

E = !1, 3k"

C = {Fn, 1 ≤ n ≤ N}, Fn ⊂ E, !Fn = 3

∃?Λ,∪n∈ΛFn = E n != n′ ∈ Λ ⇒ Fn ∩ Fn′ = ∅

NP-completeness

• Reduction of 3-SETS to sparse approximation
✦ m=3k
✦ vector
✦ matrix
✦ tolerance

• Exact cover implies existence of x such that

• Non-exact cover implies the opposite

A = (ain)1≤i≤m,1≤n≤N ain =
{

1, i ∈ Fn

0, otherwise

b = (bi)m
i=1 bi = 1,∀i

ε < 1

‖b−Ax‖ ≤ ε, and ‖x‖0 ≤ k

9
gap=1

1 3k

1 3k

Practical approaches:
Optimization principles

Overall compromise

• Approximation quality

• Ideal sparsity measure : “norm”

• “Relaxed” sparsity measures

‖Ax− b‖2

!0

13

0 < p < ∞, ‖x‖p :=
(∑

n

|xn|p
)1/p

‖x‖0 := !{n, xn "= 0} =
∑

n

|xn|0

Lp norms / quasi-norms

• Norms when

• Quasi-norms when

• “Pseudo”-norm for p=0

14

1 ≤ p <∞

0 < p < 1

Triangle inequality

‖x‖p = 0 ⇔ x = 0
‖λx‖p = |λ|‖x‖p,∀λ, x

‖x + y‖p ≤ ‖x‖p + ‖y‖p,∀x, y

Quasi-triangle
inequality

‖x + y‖p ≤ 21/p
(
‖x‖p + ‖y‖p

)
,∀x, y

‖x + y‖p
p ≤ ‖x‖p

p + ‖y‖p
p,∀x, y

‖x + y‖0 ≤ ‖x‖0 + ‖y‖0,∀x, y

= convex

= nonconvex

Optimization problems

• Approximation

• Sparsification

• Regularization

15

min
x
‖b−Ax‖2 s.t. ‖x‖p ≤ τ

min
x
‖x‖p s.t. ‖b−Ax‖2 ≤ ε

min
x

1
2
‖b−Ax‖2 + λ‖x‖p

Lp “norms” level sets
• Strictly

convex when
p>1

• Convex p=1 • Nonconvex
p<1

16

{x s.t.b = Ax}

Texte

Observation: the minimizer is sparse

Sparsity of L1 minimizers

• Real-valued case
✦ A = an m x N real-valued matrix
✦ b = an m-dimensional real-valued vector
✦ X = set of all minimum L1 norm solutions to

• Fact 1: X is convex and contains a “sparse” solution

• Proof : exercice!

17

Ax = b

∃x0 ∈ X, ‖x0‖0 ≤ m

x̃ ∈ X ⇔ ‖x̃‖1 = min ‖x‖1 s.t. Ax = b

Sparsity of L1 minimizers

• Real-valued case
✦ A = an m x N real-valued matrix
✦ b = an m-dimensional real-valued vector
✦ X = set of al solutions to regularization problem

• Fact 2: X is a convex set and contains a “sparse”
solution

• Proof : exercice, using Fact 1!

18

∃x0 ∈ X, ‖x0‖0 ≤ m

L(x) :=
1
2
‖Ax− b‖2

2 + λ‖x‖1

x̃ ∈ X ⇔ L(x̃) = min
x
L(x)

Sparsity of L1 minimizers

• A word of caution: this does not hold true in
the complex-valued case

• Counter example: there is a construction where
✦ A = a 2 x 3 complex-valued matrix
✦ b = a 2-dimensional complex-valued vector
✦ the minimum L1 norm solution is unique and has 3

nonzero components

19

[E. Vincent, Complex Nonconvex Optimization l_p norm minimization for underdetermined
source separation, Proc. ICA 2007.]

Global Optimization : from
Principles to Algorithms
• Optimization principle

✦ Sparse representation
✦ Sparse approximation

local minima convex : global minimum

NP-hard
combinatorial Iterative thresholding / proximal algo.FOCUSS / IRLS Linear

Lasso [Tibshirani 1996], Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
 Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes & Pesquet 2008, ...]

20

λ→ 0
λ > 0

min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p

Ax = b
Ax ≈ b

Algorithms for L1:
Linear Programming

• L1 minimization problem of size m x N

• Equivalent linear program of size m x 2N

21

min
x

‖x‖1, s.t. Ax = b

min
z≥0

cT z, s.t. [A,−A]z = b

c = (ci), ci = 1,∀i

Basis Pursuit (BP)
LASSO

L1 regularization:
Quadratic Programming
• L1 minimization problem of size m x N

• Equivalent quadratic program of size m x 2N

22

min
x

1
2
‖b−Ax‖2

2 + λ‖x‖1

min
z≥0

1
2
‖b− [A,−A]z‖2

2 + cT z

c = (ci), ci = 1,∀i

Basis Pursuit Denoising
(BPDN)

Generic approaches vs
specific algorithms

• There is a vast literature on linear / quadratic
programming algorithms

• Can use linprog in Matlab

• But ...
✦ The problem size is “doubled”
✦ Specific structures of the matrix A can help solve BP

and BPDN more efficiently
✦ More efficient toolboxes have been developed

23

Optimization algorithms

Example: orthonormal A

• Assumption : m=N and A is orthonormal

• Expression of BPDN criterion to be minimized

• Minimization can be done coordinate-wise

25

AT A = AAT = IdN

‖b−Ax‖2
2 = ‖AT b− x‖2

2

∑

n

1
2
(
(AT b)n − xn

)2 + λ|xn|p

min
xn

1
2
(
cn − xn

)2 + λ|xn|p

Hard-thresholding (p=0)

• Solution of

26

Hλ(c)

c

min
x

1
2
(c− x)2 + λ · |x|0

√
2λ

−
√

2λ

Soft-thresholding (p=1)

• Solution of

λ

−λ

27

Sλ(c)

c

min
x

1
2
(c− x)2 + λ · |x|

Iterative thresholding
• Proximity operator

• Goal = compute

• Approach = iterative alternation between

✦ gradient descent on fidelity term

✦ thresholding

28

arg min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p

x(i+1/2) := x(i) + α(i)AT (b−Ax(i))

Θp
λ(c) = arg min

x

1
2
(x− c)2 + λ|x|p

x(i+1) := Θp
λ(i)(x(i+1/2))

Iterative Thresholding

• Theorem : [Daubechies, de Mol, Defrise 2004, Combettes & Pesquet 2008]

✦ consider the iterates defined by
the thresholding function, with

✦ assume that and
✦ then, the iterates converge strongly to a limit

✦ the limit is a global minimum of

✦ if p>1, or if A is invertible, is the unique minimum

29

x(i+1) = f(x(i))

x!
∀x, ‖Ax‖2

2 ≤ c‖x‖2
2 α < 2/c

x!

‖x(i) − x!‖2 →i→∞ 0
1
2
‖Ax− b‖2

2 + λ‖x‖p
p

x!

p ≥ 1
f(x) = Θp

αλ(x + αAT (b−Ax))

Pareto curve

30

τ

ε

1
2
‖b−Ax‖2

2

Slope=

Sparse
representation

‖x‖p
p

−λ

Path of the solution

• Lemma: let be a local minimum of BPDN

• let I be its support

• Then

• In particular

31

arg min
x

1
2
‖Ax− b‖2

2 + λ‖x‖1

x!

AT
I (Ax! − b) + λ · sign(x!

I) = 0
‖AT

Ic(Ax! − b)‖∞ < λ

xI = (AT
I AI)−1

(
AT

I b− λ · sign(xI)
)

Homotopy method

• Principle: track the solution of BPDN
along the Pareto curve

• Property:
✦ solution is characterized by its sign pattern through

✦ for given sign pattern, dependence on is affine
✦ sign patterns are piecewise constant functions of
✦ overall, the solution is piecewise affine

• Method = iteratively find breakpoints

32

x!(λ)

xI = (AT
I AI)−1

(
AT

I b− λ · sign(xI)
)

λ
λ

Greedy Algorithms

Greedy algorithms

• Observation: when A is orthormal,
✦ the problem

✦ is equivalent to

• Let index the k largest inner products

✦ an optimum solution is

34

min
x
‖b−Ax‖22 s.t. ‖x‖0 ≤ k

min
x

∑

n

(AT
nb− xn)2 s.t. ‖x‖0 ≤ k

xn = AT
nb, n ∈ Λk; xn = 0, n /∈ Λk

Λk
min
n∈Λk

|AT
nb| ≥ max

n/∈Λk

|AT
nb|

Greedy algorithms

• Iterative algorithm (= Matching Pursuit)
✦ Initialize a residual to
✦ Compute all inner products

✦ Select the largest in magnitude

✦ Compute an updated residual

✦ If then stop, otherwise increment i and iterate

35

r0 = b i = 1

AT ri−1 = (AT
nri−1)N

n=1

ni = arg max
n

|AT
nri−1|

ri = ri−1 − (AT
ni

ri−1)Ani

i ≥ k

Dictionaries and atoms

• Convention on m x N matrix A
✦ normalized columns:

✦ complete column span:

✦ in particular:

• Vocabulary:
✦ A is called a signal dictionary
✦ columns are called atoms

36

‖An‖2 = 1,∀n

span(An, 1 ≤ n ≤ N) = Rm

m ≤ N

Matching Pursuit (MP)

• Matching Pursuit (aka Projection Pursuit, CLEAN)
✦ Initialization
✦ Atom selection:

✦ Residual update

• Energy preservation (Pythagoras theorem)

37

ni = arg max
n

|AT
nri−1|

ri = ri−1 − (AT
ni

ri−1)Ani

‖ri−1‖2
2 = |AT

ni
ri−1|2 + ‖ri‖2

2

r0 = b i = 1

Main properties

• Global energy preservation

• Global reconstruction

• Strong convergence

38

‖b‖2
2 = ‖r0‖2

2 =
k∑

i=1

|AT
ni

ri−1|2 + ‖rk‖2
2

b = r0 =
k∑

i=1

AT
ni

ri−1Ani + rk

lim
i→∞

‖ri‖2 = 0

Orthonormal MP (OMP)

• Observation: after k iterations

• Approximant belongs to

• Best approximation from = orthoprojection

• OMP residual update rule

39

rk = b−
k∑

i=1

αkAni

Λk = {ni, 1 ≤ i ≤ k}
Vk = span(An, n ∈ Λk)

Vk

rk = b− PVkb

PVkb = AΛkA
+
Λk

b

OMP

• Same as MP, except residual update rule
✦ Atom selection:

✦ Index update
✦ Residual update

• Property : strong convergence

40

ni = arg max
n

|AT
nri−1|

Λi = Λi−1 ∪ {ni}

Vi = span(An, n ∈ Λi)

ri = b− PVib
lim

i→∞
‖ri‖2 = 0

Weak Pursuits

• Sometimes the following optimization is too
complex

• Weak selection : pick any atom such that

• Convergence is preserved [Temlyakov]

41

ni = arg max
n

|AT
nri−1|

|AT
ni

ri−1| ≥ t sup
n

|AT
nri−1|

Convergence rate

• Observation:
✦ the quantity is a norm

✦ by equivalence of all norms in finite dimension

• At each iteration

42

‖r‖A = sup
n

|AT
nr|

∃c > 0,∀r, ‖r‖A ≥ c‖r‖2

‖ri‖22 ≤ ‖ri−1‖22 − t2‖ri−1‖2A
≤ ‖ri−1‖22 − t2c2‖ri−1‖22
≤ (1− t2c2)i‖r0‖22

Caveats (1)

• MP can pick up the same atom more than
once

• OMP will never select twice the same atom
43

b
A1

A2

Caveats (1)

• MP can pick up the same atom more than
once

• OMP will never select twice the same atom
43

b
A1

A2

Caveats (1)

• MP can pick up the same atom more than
once

• OMP will never select twice the same atom
43

b
A1

A2

r1

Caveats (1)

• MP can pick up the same atom more than
once

• OMP will never select twice the same atom
43

b
A1

A2

r1

Caveats (1)

• MP can pick up the same atom more than
once

• OMP will never select twice the same atom
43

b
A1

A2

r1

r2

Caveats (1)

• MP can pick up the same atom more than
once

• OMP will never select twice the same atom
43

b
A1

A2

r1

r2

Caveats (1)

• MP can pick up the same atom more than
once

• OMP will never select twice the same atom
43

b
A1

A2

r1

r2

Caveats (2)

• “Improved” atom selection does not
necessarily improve convergence

• There exists two dictionaries A and B
✦ Best atom from B at step i:

✦ Better atom from A

✦ Residual update

• Divergence!
44

∃c > 0,∀i, ‖ri‖2 ≥ c

ni = arg max
n

|BT
nri−1|

|AT
!i
ri−1| ≥| BT

nri−1|

ri = ri−1 − (AT
!i
ri−1)A!i

Stagewise greedy algorithms

• Principle = select multiple atoms at a time to
accelerate the process

• Example of such algorithms
✦ Morphological Component Analysis [MCA, Bobin et al]
✦ Stagewise OMP [Donoho & al]
✦ CoSAMP [Needell & Tropp]
✦ ROMP [Needell & Vershynin]
✦ Iterative Hard Thresholding [Blumensath & Davies 2008]

45

Main greedy algorithms

46

Matching Pursuit OMP Stagewise
Selection

Update

MP & OMP: Mallat & Zhang 1993
StOMP: Donoho & al 2006 (similar to MCA, Bobin & al 2006)

A = [A1, . . .AN]

Γi := arg max
n

|AT
nri−1| Γi := {n | |AT

nri−1| > θi}

Λi = Λi−1 ∪ Γi

xi = xi−1 + A+
Γi

ri−1

Λi = Λi−1 ∪ Γi

xi = A+
Λi

b
ri = b−AΛixi

b = Axi + ri

ri = ri−1 −AΓiA
+
Γi

ri−1

Principle

iterative decomposition
• select new components
• update residual

Tuning
quality/sparsity regularization parameter

stopping criterion
(nb of iterations, error level, ...)

Variants
• choice of sparsity measure p
• optimization algorithm
• initialization

•selection criterion (weak, stagewise ...)
•update strategy (orthogonal ...)

Iterative greedy algorithmsGlobal optimization

 Summary

47

λ

ri = b−Axi

‖ri‖ ≤ ε

min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p

‖xi‖0 ≥ k

Complexity of IST

• Notation: cost of applying or

• Iterative Thresholding
✦ cost per iteration =
✦ when A invertible, linear convergence at rate

✦ number of iterations guaranteed to approach limit
within relative precision

• Limit depends on choice of penalty factor ,
added complexity to adjust it

48

f(x) = Θp
αλ(x + αAT (b−Ax))

O(A)

O(A) A AT

‖x(i) − x!‖2 ! Cβi‖x!‖2 β ≤ 1− σ2
min

σ2
max

ε

O(log 1/ε)
λ

Complexity of MP

• Number of iterations depends on stopping
criterion

• Cost of first iteration = atom selection
(computation of all inner products)

• Naive cost of subsequent iterations =

• If “local” structure of dictionary [Krstulovic & al, MPTK]
✦ subsequent iterations only cost

49

O(A)
‖ri‖2 ≤ ε, ‖xi‖0 ≥ k

O(A)

Generic A Local A

k iterations O(kA) ≥ O(km)

O(log N)

O(A + k log N)

k ∝ m O(m2) O(m log N)

Complexity of OMP
• Number of iterations depends on stopping

criterion

• Naive cost of iteration i
✦ atom selection + orthoprojection

• With iterative matrix inversion lemma
✦ atom selection + coefficient update

• If “local” structure of dictionary [Mailhé & al, LocOMP]
✦ subsequent approximate iterations only cost

50

O(A)

‖ri‖2 ≤ ε, ‖xi‖0 ≥ k

Generic A Local A

k iterations

O(log N)

O(A + k log N)

k ∝ m O(m log N)

O(i3)

O(A) O(i)

O(kA + k2)
O(m3)

LoCOMP

• A variant of OMP for shift invariant dictionaries
(Ph.D. thesis of Boris Mailhé, ICASSP09)

• Implementation in MPTK in progress for larger scale
experiments, collaboration with T. Blumensath

51

Table 3. CPU time per iteration (s)

Iteration MP LocOMP GP OMP

First (i = 0) 3.4 3.4 3.4 3.5
Begin (i ≈ 1) 0.028 0.033 3.4 3.4
End (i ≈ I) 0.028 0.050 40.5 41
Total time 571 854 4.50 · 105 4.52 · 105

Fig. 2. SNR depending on the decoding bitrate

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

22

Bitrate (kbps)

S
N
R

(
d
B
)

MP

LocOMP

The CPU times per iteration evolved linearly for each algo-

rithm. Table 3 shows their value for the first iteration (which

is relatively costly for every algorithm because it involves

computing inner products with all atoms of the dictionary),

the next beginning iterations, the last iterations and finally the

total duration of the complete execution.

The algorithms clearly split into two groups. The cost drop

after the first iteration for MP shows that most of the first it-

eration was spent computing the correlations, and both MP

and LocOMP iterations remain much cheaper after the first

iteration. To the opposite, the cost of GP and OMP iterations

grows substantially with the iteration index and reaches up to

1500 (resp. 800) times than that of MP (resp. LocOMP) it-

erations. On this example, LocOMP almost reached the same

level of approximation error as OMP/GP, with a total compu-

tation cost only 1.5 times that of MP and 500 times smaller

than that of OMP/GP .

5.2. Preliminary application to audio coding

In a second experiment, we investigated the potential use of

LocOMP in the scalable coding framework proposed by Rav-

elli and Daudet [6]. The 8 kHz signal was decomposed on a

two-scale fully shift-invariant MDCT dictionary with scales

L1 = 32 and L2 = 256, roughly corresponding at 8kHz to
the scales used in AAC encoding at 44.1kHz.

Figure 2 shows the rate/distortion curve of this coding

scheme using MP and LocOMP as a transform. At high rates,

LocOMP coding leads to less distortion thanMP coding, with

a final gain of 1.4dB. However, LocOMP seems to also bring

a degradation at lower rates. Since the considered dictionary

is much smaller than the eight-scale dictionary used in [6],

further work will investigate the influence of the dictionary

choice on the coding performance.

6. CONCLUSION

We proposed a greedy algorithm called LocOMP for compu-

tationally tractable sparse approximation of long signals with

large shift-invariant dictionaries. We have shown on an ex-

ample that its approximation performance is similar to that of

OMP/GP, with a gain of 0.6 dB over MP, while the computa-

tional cost remains 500 times lower than that of OMP. We ex-

pect the approximation gain of LocOMP over MP to be more

significant for dictionaries more adapted to the decomposed

signal (e.g.,L rather of the order of 256, the largest scale used
in AAC codecs), however for such scales it no longer seems

possible to compare the proposed algorithm with OMP/GP,

because of the computational complexity of the latter.

Current work consists in implementing LocOMP as well

as a localized version of Gradient Pursuit in MPTK [5] to

benefit from all other speedup tricks briefly described in this

paper, and we believe this will open the door to large scale

experiments and applications of sparse approximation that so

far seemed unachievable.

7. ACKNOWLEDGEMENTS

The authors would like to thank Emmanuel Ravelli and Lau-

rent Daudet from the LAM team at University Paris 6 for their

help with the audio coding experiments.

8. REFERENCES

[1] S. Mallat and Z. Zhang, “Matching pursuit with time-frequency

dictionaries,” IEEE Transactions on Signal Processing, vol. 41,

no. 12, pp. 3397–3415, Dec 1993.

[2] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, “Orthonormal

matching pursuit : recursive function approximation with appli-

cations to wavelet decomposition,” in Proc. 27th Annual Asilo-

mar Conf. on Signals, Systems and Computers, Nov. 1993.

[3] T. Blumensath and M.E. Davies, “In greedy pursuit of new di-

rections: (nearly) orthogonal matching pursuit by directional

optimisation,” in Proc. EUropean SIgnal Processing COnfer-

ence (EUSIPCO’08), Lausanne, August 2008.

[4] Andrew R. Barron, Albert Cohen, Wolfgang Dahmen, and

Ronald A. DeVore, “Approximation and learning by greedy al-

gorithms,” Annals of statistics, vol. 36, no. 1, pp. 64–94, 2008.

[5] Sacha Krstulovic and Rémi Gribonval, “MPTK: Matching Pur-

suit made tractable,” in Proc. Int. Conf. Acoust. Speech Signal

Process. (ICASSP’06), Toulouse, France, May 2006, vol. 3, pp.

III–496 – III–499.

[6] E. Ravelli, G. Richard, and L. Daudet, “Extending fine-grain

scalable audio coding to very low bitrates using overcomplete

dictionaries,” in Proc. IEEE Workshop on Applications of Sig-

nal Processing to Audio and Acoustics (WASPAA’07), 2007, pp.

195–198.

4. LocOMP ALGORITHM

As described above, in shift-invariant dictionarie, simple

tricks allow to significantly reduce the computational com-

plexity of MP compared to a naive implementations. How-

ever, the cost of OMP and GP remains quite high, calling for

modified algorithms to handle real-world large-scale signals,

where the aimed number of atoms I is somewhat lower than
the signal size N , but the latter is large enough to discourage
naive computation (e.g. for one minute of music sampled at 8

kHz, we already haveN ≈ 5 · 105).

The prohibitive costs for OMP and GP are the ones with

strongest dependency in N : as shown in Table 2 the most
costly steps are the correlation computation and maximum

search, which have linear dependency in N . This linear de-
pendency has disappeared in MP by exploiting the locality of

the changes in the residual. This is why we propose an algo-

rithm that only slightly loosens this locality property. To our

knowledge, all approaches to decrease OMP complexity em-

phasize the reduction in the cost of the update step (e.g., by

replacing full matrix inversion by conjugate gradient descent

as in [3]), not the selection step.

The main idea of the proposed LocOMP algorithm is to se-

lect a sub-dictionary Ψi ⊂ Φi containing the last selected

atom ϕi and to orthogonalize the decomposition only on this

sub-dictionary. The algorithm is described in Algorithm 1,

and the key element that determines the behaviour of the al-

gorithm is the neighbour() function that performs the sub-

dictionary selection:

• MP corresponds to neighbour(Φi, ϕi) := ϕi;

• OMP corresponds to neighbour(Φi, ϕi) := Φi;

To decrease the computational cost with respect to OMP, it

is crucial to ensure that the support of Ψχi is small so that

the update of the residual remains localized. In LocOMP,

neighbour(Φi, ϕi) contains exactly all the atoms ϕ ∈ Φi

which support intersects with the support of ϕi. This choice

was mainly led by the observation that, as explained in Sec-

tion 3, this set is already the one that has to be searched for

when updating the Gram matrix. Selecting it as the atom’s

neighbourhood spares another search. Investigating other

possible sub-dictionary selection strategies will be the object

of further work.

5. EXPERIMENTAL RESULTS

LocOMP has been tested and compared to MP, OMP and

GP on an excerpt from the RWC base2. It is a one-minute

mono-channel jazz guitar audio signal downsampled to 8kHz

(N ≈ 5 · 105). Given the high cost of running OMP and

GP for comparison (the total running time for each of these

algorithms in the first experiment below was roughly 5 · 105

2http://staff.aist.go.jp/m.goto/RWC-MDB/

Algorithm 1 x = LocOMP(s,Φ)
r0 = s
Φ0 = ∅
x0 = 0
for i = 1 to I do

ϕi = argmaxϕ∈Φ |〈ri−1, ϕ〉| {selection}
Φi = Φi−1 ∪ ϕi

Ψi = neighbour(Φi, ϕi) {sub-dictionary selection}
χi = (Ψ∗

i Ψi)
−1

Ψ
∗
i ri−1 {coefficients of projection on sub-

dictionary}

xi = xi−1 + χi {update coefficients}

ri = ri−1 − Ψiχi {update residual}

end for

return xI

Fig. 1. SNR depending on the number of iterations

0 0.5 1 1.5 2

x 10
4

0

2

4

6

8

10

12

Number of iterations

S
N

R
 (

d
B

)

MP

LocOMP

GP

OMP

seconds, or 5.7 days), it was not possible to run experiments
on more than one signal, and this was also the largest sig-

nal dimension we could test. In comparison, the computation

time of LocOMP was 854 seconds or 15 minutes.

5.1. SNR and computation time

In a first experiment, OMP, GP, LocOMP and MP were run

for I = 20000 iterations3 to decompose the signal on a fully
shift-invariant MDCT dictionary of scale L = 32 (therefore
with redundancy factor α = 32) containing αN ≈ 1.5 · 107

atoms. The scale was chosen for it roughly corresponds to

the smallest scale of the windows used in AAC encoding on

44.1 kHz signals, while remaining small enough to make it

possible to actually run OMP and GP.

Figure 1 shows the SNR reached by each algorithm at each

iteration. OMP, GP and LocOMP cannot be distinguished on

this plot. The final SNR for LocOMP after 20000 iterations is
actually only 0.01dB lower than for OMP and GP, while the

final SNR for MP is 0.6dB lower.

3The iterations of the different algorithms were interleaved on the same

process to guarantee that the execution environment remains the same for

each algorithm, and the CPU time used by each iteration was recorded.

N = 5.105 samples, k= 20 000 iterations

Some algorithms /
software on the market
• Matlab (simple to adapt, medium scale problems):

✦ L1 minimization with an available toolbox
➡ http://www.l1-magic.org/ (Candès et al.), ...

✦ iterative thresholding
➡ http://www.morphologicaldiversity.org/ (Starck et al.)

• MPTK : C++, large scale problems
✦ optimized Matching Pursuit
✦ millions of unknowns, a few minutes of computation
✦ several time-frequency dictionaries
✦ builtin multichannel

➡ http://mptk.irisa.fr

• More on http://www.dsp.rice.edu/cs

52

http://www.l1-magic.org
http://www.l1-magic.org
http://www.morphologicaldiversity.org
http://www.morphologicaldiversity.org
http://mptk.irisa.fr
http://mptk.irisa.fr
http://www.dsp.rice.edu/cs
http://www.dsp.rice.edu/cs

Appendix

Iterative Soft Thresholding
(IST)

• Theorem : assume
✦ consider the iterates defined

by the soft thresholding function

✦ assume that
✦ whenever the iterates converge

geometrically in L2 norm to the unique local
minimum of the BPDN optimization problem

✦ for the rate is

54

x(i+1) = f(x(i))

f(x) = Sαλ(x + αAT (b−Ax))

x!

a‖x‖2
2 ≤ ‖Ax‖2

2 ≤ b‖x‖2
2,∀x 0 < a ≤ b <∞

α = 2/(b + a)

α = 2/(b + a)
‖x(i) − x!‖2 ≤

(
b− a

b + a

)i

‖x(0) − x!‖2

Convergence of IST (1)

• Soft thresholding satisfies

• Recall that

• Therefore for any x,y

55

‖f(x)− f(y)‖q ≤ ‖x− y − αAT A(x− y)‖q

= ‖(Id− αAT A)(x− y)‖q

≤ ‖Id− αAT A‖q→q · ‖x− y‖q

c

Sαλ(c)

αλ

−αλ
|Sαλ(a)− Sαλ(b)| ≤ |a− b|

f(x) = Sαλ(x + αAT (b−Ax))

Convergence of IST (2)

• Assume that for some

• Fixed point theorem (contracting iterations):
✦ the sequence converges in the p-norm to the

unique solution of the fixed point equation

• The convergence is geometric with rate

56

x(i)

β

β := ‖Id− αAT A‖q→q < 1

‖x(i) − x!‖q ≤ βi‖x(0) − x!‖q

1 ≤ q ≤ ∞

x! = f(x!) = Sµ(x! + αAT (b−Ax!))

Convergence of IST (3)

• Set q=2. By assumption, in the sense of
symmetric matrices

• The condition is
equivalent to

• The optimum is reached for

57

aId ≤ AT A ≤ bId
(1− αb)Id ≤ Id− αAT A ≤ (1− αa)Id

max(|1− αb|, |1− αa|) < 1
0 < α < 2/b

β = ‖Id− αAT A‖2→2 < 1

β =
b− a

b + a

α =
2

b + a

Proof of the Lemma

• =matrix with columns of indexed by I

• The restricted vector is a local minimum of

• Since has no zero entry, the objective function
is smooth at and its gradient must be zero

• A similar analysis yields the second condition

58

x!
I

AI A

x!
I

x!
I

AT
I (AIx

!
I − b) + λ · sign(x!

I) = 0

arg min
x̄

1
2
‖AI x̄− b‖2

2 + λ‖x̄‖1

‖AT
Ic(Ax! − b)‖∞ < λ

Limit of IST (2)

• = any local minimum of BPDN

• I = support of

• For indices in I we have

• For indices not in I we have

• Therefore is the unique fixed point
59

αAT
I (b−Ax!) = αλsign(x!

I)
x!

I + αAT
I (b−Ax!) = (|x!

I | + αλ)sign(x!
I)

Sαλ(x#
I + αAT

I (b−Ax#)) = |x#
I |sign(x#

I) = x#
I

Sαλ(x#
Ic + αAT

Ic(b−Ax#)) = Sαλ(αAT
Ic(b−Ax#))

= 0 = x!
Ic

x!

x!

x!

Limit of IST (3)

• We conclude that

✦ was any local minimum of BPDN
✦ it must be the unique fixed point
✦ therefore, there is a unique local minimum of

BPDN, which is the limit of IST.

60

x! = f(x!) = Sαλ(x! + αAT (b−Ax!))

x!

Homotopy method

• For any sign pattern s, define as
above, which varies affinely with

• If then

✦ the strict inequality remains true for close
to , meaning that in a neighborhood of the
solution to BPDN is indeed

✦ the sign pattern is therefore piecewise constant
✦ breakpoint occur where

61

xI = (AT
I AI)−1

(
AT

I b− λ · sign(xI)
)

xIc = 0
x!(λ, s)

‖AT
I(s)c(Ax!(λ, s)− b)‖∞ < λ

λ′

λ λ
x!(λ, s)

λ

‖AT
I(s)c(Ax!(λ, s)− b)‖∞ = λ

Homotopy algorithm

• For the solution is with
sign pattern ; set and k=0

• Determine the next breakpoint: is the
largest value of such that either
✦ a component of vanishes
✦ a component violates the inequality

• Determine the sign pattern for
✦ some components may go to zero
✦ some new components may enter

62

x! = 0

sk+1 λ ! λk

λ <λ k

λ > ‖AT b‖∞
λ0 =∞s0 = 0

λk+1

x!
Ik

(λ, sk)

‖AT
Ic

k
(Ax!(λ, sk)− b)‖∞ < λ

