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Overview

• Complexity of ideal sparse approximation

• Convex optimization

• Greedy algorithms

• Nonconvex optimization ?
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Ideal sparse approximation

• Input:
m x N matrix A, with m < N,  m-dimensional vector b 

• Possible objectives:
find the sparsest approximation within tolerance

find best approximation with given sparsity

find a solution x to
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arg min
x
‖x‖0, s.t.‖b−Ax‖ ≤ ε

arg min
x
‖b−Ax‖, s.t.‖x‖0 ≤ k

‖b−Ax‖ ≤ ε, and ‖x‖0 ≤ k



• Coefficient domain        : 
• set      of sparse vectors

• Set           =       subspaces 
in signal domain

• Ideal sparse approximation 
= find nearest subspace 
among 

Geometric interpretation 
of sparse approximation
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Complexity

• Polynomial algorithm: given input of size 
N, compute output in cost poly(N)

• Polynomial problem (is in P): there is a 
polynomial algorithm which can compute the 
solution to each instance of the problem

• Example: 
✦ problem: find the nearest neighbor to an m-

dimensional vector from a collection of N such 
vectors

✦ input size = m x (N+1)
✦ complexity = O(Nm)  [N distances in      ] 
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Complexity: NP

• Decision problem: of the type “does there 
exist x satisfying a given set of constraints”

• Non-deterministic polynomial 
decision problems (in NP):  if there is a 
polynomial algorithm which can check for any 
instance of the problem if a candidate solution x 
satisfies the constraint.

✤ warning: the algorithm is not required to find a solution. It merely 
has to check if a solution x (given by an “oracle”) is acceptable.
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Complexity: NP-complete

• Reduction: every instance of Problem A can be 
transformed into an instance of Problem B in 
polynomial time

• NP-hard problem: Problem B such that every 
Problem A in NP can be reduced to B.

• NP-complete problems: NP-hard + in NP

• Fact: there exists at least one NP-complete 
problem (satisfiability problem = SAT)
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A “less complex” than B



Complexity of sparse 
approximation 

• Step 1: express it as a decision problem:
✦ description of an instance 

m x N matrix A, m-dimensional vector b, parameters

✦ size of an instance = approximately mN
✦ decision problem: does there exists x such that

• Step 2: prove it is in NP. Indeed, one can check in 
polynomial time O(mN) whether a given x 
satisfies the constraints  

• Step 3: reduce an existing problem to it to show 
it is NP-complete
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(ε, k)

‖b−Ax‖ ≤ ε, and ‖x‖0 ≤ k



NP-completeness of 
sparse approximation

• Which known NP-complete problem?    
Exact-cover by 3-sets

✦ Description of an instance: 

✤ The integer interval
✤ A collection of subsets of size 3

✦ Decision problem:
✤ does there exist an exact cover (=disjoint partition) of E from 

elements of C ?
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[Davis & al 1997]
(other approach in [Natarajan 1995])

E = !1, 3k"

C = {Fn, 1 ≤ n ≤ N}, Fn ⊂ E, !Fn = 3

∃?Λ,∪n∈ΛFn = E n != n′ ∈ Λ ⇒ Fn ∩ Fn′ = ∅



NP-completeness

• Reduction of 3-SETS to sparse approximation
✦ m=3k
✦ vector
✦ matrix
✦ tolerance

• Exact cover implies existence of x such that

• Non-exact cover implies the opposite

A = (ain)1≤i≤m,1≤n≤N ain =
{

1, i ∈ Fn

0, otherwise

b = (bi)m
i=1 bi = 1,∀i

ε < 1

‖b−Ax‖ ≤ ε, and ‖x‖0 ≤ k
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Practical approaches:
Optimization principles



Overall compromise 

• Approximation quality

• Ideal sparsity measure :           “norm”

• “Relaxed” sparsity measures

‖Ax− b‖2

!0
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0 < p < ∞, ‖x‖p :=
( ∑

n

|xn|p
)1/p

‖x‖0 := !{n, xn "= 0} =
∑

n

|xn|0



Lp norms / quasi-norms

• Norms when

• Quasi-norms when

• “Pseudo”-norm for p=0 

14

1 ≤ p <∞

0 < p < 1

Triangle inequality

‖x‖p = 0 ⇔ x = 0
‖λx‖p = |λ|‖x‖p,∀λ, x

‖x + y‖p ≤ ‖x‖p + ‖y‖p,∀x, y

Quasi-triangle 
inequality

‖x + y‖p ≤ 21/p
(
‖x‖p + ‖y‖p

)
,∀x, y

‖x + y‖p
p ≤ ‖x‖p

p + ‖y‖p
p,∀x, y

‖x + y‖0 ≤ ‖x‖0 + ‖y‖0,∀x, y

= convex

= nonconvex



Optimization problems

• Approximation

• Sparsification

• Regularization
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min
x
‖b−Ax‖2 s.t. ‖x‖p ≤ τ

min
x
‖x‖p s.t. ‖b−Ax‖2 ≤ ε

min
x

1
2
‖b−Ax‖2 + λ‖x‖p



Lp “norms” level sets
• Strictly 

convex when 
p>1

• Convex p=1 • Nonconvex 
p<1
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{x s.t.b = Ax}

Texte

Observation: the minimizer is sparse



Sparsity of L1 minimizers

• Real-valued case
✦ A = an m x N real-valued matrix
✦ b = an m-dimensional real-valued vector
✦ X = set of all minimum L1 norm solutions to

• Fact 1: X is convex and contains a “sparse” solution 

• Proof : exercice!
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Ax = b

∃x0 ∈ X, ‖x0‖0 ≤ m

x̃ ∈ X ⇔ ‖x̃‖1 = min ‖x‖1 s.t. Ax = b



Sparsity of L1 minimizers

• Real-valued case
✦ A = an m x N real-valued matrix
✦ b = an m-dimensional real-valued vector
✦ X = set of al solutions to regularization problem

• Fact 2: X is a convex set and contains a “sparse” 
solution 

• Proof : exercice, using Fact 1!
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∃x0 ∈ X, ‖x0‖0 ≤ m

L(x) :=
1
2
‖Ax− b‖2

2 + λ‖x‖1

x̃ ∈ X ⇔ L(x̃) = min
x
L(x)



Sparsity of L1 minimizers

• A word of caution: this does not hold true in 
the complex-valued case 

• Counter example: there is a construction where
✦ A = a 2 x 3 complex-valued matrix
✦ b = a 2-dimensional complex-valued vector
✦ the minimum L1 norm solution is unique and has 3 

nonzero components
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[E. Vincent, Complex Nonconvex Optimization l_p norm minimization for underdetermined 
source separation, Proc. ICA 2007.]



Global Optimization : from 
Principles to Algorithms
• Optimization principle

✦ Sparse representation
✦ Sparse approximation

local minima convex : global minimum

NP-hard 
combinatorial Iterative thresholding / proximal algo.FOCUSS / IRLS Linear

Lasso [Tibshirani 1996],  Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
 Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes & Pesquet 2008, ...]
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λ→ 0
λ > 0

min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p

Ax = b
Ax ≈ b



Algorithms for L1: 
Linear Programming

• L1 minimization problem of size m x N

• Equivalent linear program of size m x 2N
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min
x

‖x‖1, s.t. Ax = b

min
z≥0

cT z, s.t. [A,−A]z = b

c = (ci), ci = 1,∀i

Basis Pursuit (BP)
LASSO



L1 regularization:  
Quadratic Programming
• L1 minimization problem of size m x N

• Equivalent quadratic program of size m x 2N
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min
x

1
2
‖b−Ax‖2

2 + λ‖x‖1

min
z≥0

1
2
‖b− [A,−A]z‖2

2 + cT z

c = (ci), ci = 1,∀i

Basis Pursuit Denoising
(BPDN)



Generic approaches vs 
specific algorithms

• There is a vast literature on linear / quadratic 
programming algorithms

• Can use linprog in Matlab

• But ...
✦ The problem size is “doubled”
✦ Specific structures of the matrix A can help solve BP 

and BPDN more efficiently
✦ More efficient toolboxes have been developed
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Optimization algorithms



Example: orthonormal A

• Assumption : m=N and A is orthonormal

• Expression of BPDN criterion to be minimized

• Minimization can be done coordinate-wise
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AT A = AAT = IdN

‖b−Ax‖2
2 = ‖AT b− x‖2

2

∑

n

1
2
(
(AT b)n − xn

)2 + λ|xn|p

min
xn

1
2
(
cn − xn

)2 + λ|xn|p



Hard-thresholding (p=0)

• Solution of
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Hλ(c)

c

min
x

1
2
(c− x)2 + λ · |x|0

√
2λ

−
√

2λ



Soft-thresholding (p=1)

• Solution of

λ

−λ
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Sλ(c)

c

min
x

1
2
(c− x)2 + λ · |x|



Iterative thresholding
• Proximity operator

• Goal = compute

• Approach = iterative alternation between 

✦ gradient descent on fidelity term

✦ thresholding
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arg min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p

x(i+1/2) := x(i) + α(i)AT (b−Ax(i))

Θp
λ(c) = arg min

x

1
2
(x− c)2 + λ|x|p

x(i+1) := Θp
λ(i)(x(i+1/2))



Iterative Thresholding

• Theorem : [Daubechies, de Mol, Defrise 2004, Combettes & Pesquet 2008]

✦ consider the iterates                                defined by 
the thresholding function, with                       

✦ assume that                                  and
✦ then, the iterates converge strongly to a limit

✦ the limit     is  a global minimum of 

✦ if p>1, or if A is invertible,      is the unique minimum 
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x(i+1) = f(x(i))

x!
∀x, ‖Ax‖2

2 ≤ c‖x‖2
2 α < 2/c

x!

‖x(i) − x!‖2 →i→∞ 0
1
2
‖Ax− b‖2

2 + λ‖x‖p
p

x!

p ≥ 1
f(x) = Θp

αλ(x + αAT (b−Ax))



Pareto curve
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τ

ε

1
2
‖b−Ax‖2

2

Slope=

Sparse 
representation

‖x‖p
p

−λ



Path of the solution

• Lemma: let      be a local minimum of BPDN

• let I be its support

• Then

• In particular
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arg min
x

1
2
‖Ax− b‖2

2 + λ‖x‖1

x!

AT
I (Ax! − b) + λ · sign(x!

I) = 0
‖AT

Ic(Ax! − b)‖∞ < λ

xI = (AT
I AI)−1

(
AT

I b− λ · sign(xI)
)



Homotopy method

• Principle: track the solution              of BPDN 
along the Pareto curve

• Property: 
✦ solution is characterized by its sign pattern through

✦ for given sign pattern, dependence on      is affine
✦ sign patterns are piecewise constant functions of  
✦ overall, the solution is piecewise affine 

• Method = iteratively find breakpoints
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x!(λ)

xI = (AT
I AI)−1

(
AT

I b− λ · sign(xI)
)

λ
λ



Greedy Algorithms



Greedy algorithms

• Observation: when A is orthormal,
✦ the problem       

✦ is equivalent to

• Let       index the k largest inner products

✦ an optimum solution is
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min
x
‖b−Ax‖22 s.t. ‖x‖0 ≤ k

min
x

∑

n

(AT
nb− xn)2 s.t. ‖x‖0 ≤ k

xn = AT
nb, n ∈ Λk; xn = 0, n /∈ Λk

Λk
min
n∈Λk

|AT
nb| ≥ max

n/∈Λk

|AT
nb|



Greedy algorithms

• Iterative algorithm (= Matching Pursuit)
✦ Initialize a residual to 
✦ Compute all inner products

✦ Select the largest in magnitude

✦ Compute an updated residual 

✦ If             then stop, otherwise increment i and iterate
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r0 = b i = 1

AT ri−1 = (AT
nri−1)N

n=1

ni = arg max
n

|AT
nri−1|

ri = ri−1 − (AT
ni

ri−1)Ani

i ≥ k



Dictionaries and atoms

• Convention on m x N matrix A
✦ normalized columns: 

✦ complete column span:

✦ in particular: 

• Vocabulary:
✦ A is called a signal dictionary
✦ columns are called atoms
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‖An‖2 = 1,∀n

span(An, 1 ≤ n ≤ N) = Rm

m ≤ N



Matching Pursuit (MP)

• Matching Pursuit (aka Projection Pursuit, CLEAN)
✦ Initialization
✦ Atom selection: 

✦ Residual update

• Energy preservation (Pythagoras theorem)
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ni = arg max
n

|AT
nri−1|

ri = ri−1 − (AT
ni

ri−1)Ani

‖ri−1‖2
2 = |AT

ni
ri−1|2 + ‖ri‖2

2

r0 = b i = 1



Main properties

• Global energy preservation

• Global reconstruction

• Strong convergence
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‖b‖2
2 = ‖r0‖2

2 =
k∑

i=1

|AT
ni

ri−1|2 + ‖rk‖2
2

b = r0 =
k∑

i=1

AT
ni

ri−1Ani + rk

lim
i→∞

‖ri‖2 = 0



Orthonormal MP (OMP)

• Observation: after k iterations

• Approximant belongs to

• Best approximation from      = orthoprojection

• OMP residual update rule 
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rk = b−
k∑

i=1

αkAni

Λk = {ni, 1 ≤ i ≤ k}
Vk = span(An, n ∈ Λk)

Vk

rk = b− PVkb

PVkb = AΛkA
+
Λk

b



OMP

• Same as MP, except residual update rule
✦ Atom selection: 

✦ Index update
✦ Residual update

• Property : strong convergence
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ni = arg max
n

|AT
nri−1|

Λi = Λi−1 ∪ {ni}

Vi = span(An, n ∈ Λi)

ri = b− PVib
lim

i→∞
‖ri‖2 = 0



Weak Pursuits

• Sometimes the following optimization is too 
complex

• Weak selection : pick any atom such that

• Convergence is preserved [Temlyakov]
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ni = arg max
n

|AT
nri−1|

|AT
ni

ri−1| ≥ t sup
n

|AT
nri−1|



Convergence rate

• Observation: 
✦ the quantity                                      is a norm

✦ by equivalence of all norms in finite dimension

• At each iteration
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‖r‖A = sup
n

|AT
nr|

∃c > 0,∀r, ‖r‖A ≥ c‖r‖2

‖ri‖22 ≤ ‖ri−1‖22 − t2‖ri−1‖2A
≤ ‖ri−1‖22 − t2c2‖ri−1‖22
≤ (1− t2c2)i‖r0‖22



Caveats (1)

• MP can pick up the same atom more than 
once

• OMP will never select twice the same atom
43
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Caveats (1)

• MP can pick up the same atom more than 
once

• OMP will never select twice the same atom
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b
A1

A2

r1

r2



Caveats (2)

• “Improved” atom selection does not 
necessarily improve convergence

• There exists two dictionaries A and B
✦ Best atom from B at step i:

✦ Better atom from A

✦ Residual update

• Divergence!
44

∃c > 0,∀i, ‖ri‖2 ≥ c

ni = arg max
n

|BT
nri−1|

|AT
!i
ri−1| ≥| BT

nri−1|

ri = ri−1 − (AT
!i
ri−1)A!i



Stagewise greedy algorithms

• Principle = select multiple atoms at a time to 
accelerate the process

• Example of such algorithms
✦ Morphological Component Analysis [MCA, Bobin et al]
✦ Stagewise OMP [Donoho & al]
✦ CoSAMP [Needell & Tropp]
✦ ROMP [Needell & Vershynin]
✦ Iterative Hard Thresholding [Blumensath & Davies 2008]

45



Main greedy algorithms
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Matching Pursuit OMP Stagewise
Selection

Update

MP & OMP: Mallat & Zhang 1993
StOMP:  Donoho & al 2006 (similar to MCA, Bobin & al 2006)

A = [A1, . . .AN ]

Γi := arg max
n

|AT
nri−1| Γi := {n | |AT

nri−1| > θi}

Λi = Λi−1 ∪ Γi

xi = xi−1 + A+
Γi

ri−1

Λi = Λi−1 ∪ Γi

xi = A+
Λi

b
ri = b−AΛixi

b = Axi + ri

ri = ri−1 −AΓiA
+
Γi

ri−1



Principle

iterative decomposition
• select new components
• update residual

Tuning 
quality/sparsity regularization parameter

stopping criterion
(nb of iterations, error level, ...)

Variants
• choice of sparsity measure p
• optimization algorithm 
• initialization

•selection criterion (weak, stagewise ...)
•update strategy (orthogonal ...)

Iterative greedy algorithmsGlobal optimization

 Summary
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λ

ri = b−Axi

‖ri‖ ≤ ε

min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p

‖xi‖0 ≥ k



Complexity of IST

• Notation:          cost of applying     or

• Iterative Thresholding
✦ cost per iteration =
✦ when A invertible, linear convergence at rate

✦ number of iterations guaranteed to approach limit 
within relative precision 

• Limit depends on choice of penalty factor   , 
added complexity to adjust it 
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f(x) = Θp
αλ(x + αAT (b−Ax))

O(A)

O(A) A AT

‖x(i) − x!‖2 ! Cβi‖x!‖2 β ≤ 1− σ2
min

σ2
max

ε

O(log 1/ε)
λ



Complexity of MP

• Number of iterations depends on stopping 
criterion 

• Cost of first iteration = atom selection 
(computation of all inner products)

• Naive cost of subsequent iterations = 

• If “local” structure of dictionary [Krstulovic & al, MPTK]
✦ subsequent iterations only cost
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O(A)
‖ri‖2 ≤ ε, ‖xi‖0 ≥ k

O(A)

Generic A Local A

k iterations O(kA) ≥ O(km)

O(log N)

O(A + k log N)

k ∝ m O(m2) O(m log N)



Complexity of OMP
• Number of iterations depends on stopping 

criterion 

• Naive cost of iteration i 
✦ atom selection           + orthoprojection             

• With iterative matrix inversion lemma
✦ atom selection           + coefficient update

• If “local” structure of dictionary [Mailhé & al, LocOMP]
✦ subsequent approximate iterations only cost
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O(A)

‖ri‖2 ≤ ε, ‖xi‖0 ≥ k

Generic A Local A

k iterations

O(log N)

O(A + k log N)

k ∝ m O(m log N)

O(i3)

O(A) O(i)

O(kA + k2)
O(m3)



LoCOMP

• A variant of OMP for shift invariant dictionaries    
(Ph.D. thesis of Boris Mailhé,  ICASSP09)

• Implementation in MPTK in progress for larger scale 
experiments, collaboration with T. Blumensath
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Table 3. CPU time per iteration (s)

Iteration MP LocOMP GP OMP

First (i = 0) 3.4 3.4 3.4 3.5
Begin (i ≈ 1) 0.028 0.033 3.4 3.4
End (i ≈ I) 0.028 0.050 40.5 41
Total time 571 854 4.50 · 105 4.52 · 105

Fig. 2. SNR depending on the decoding bitrate
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The CPU times per iteration evolved linearly for each algo-

rithm. Table 3 shows their value for the first iteration (which

is relatively costly for every algorithm because it involves

computing inner products with all atoms of the dictionary),

the next beginning iterations, the last iterations and finally the

total duration of the complete execution.

The algorithms clearly split into two groups. The cost drop

after the first iteration for MP shows that most of the first it-

eration was spent computing the correlations, and both MP

and LocOMP iterations remain much cheaper after the first

iteration. To the opposite, the cost of GP and OMP iterations

grows substantially with the iteration index and reaches up to

1500 (resp. 800) times than that of MP (resp. LocOMP) it-

erations. On this example, LocOMP almost reached the same

level of approximation error as OMP/GP, with a total compu-

tation cost only 1.5 times that of MP and 500 times smaller

than that of OMP/GP .

5.2. Preliminary application to audio coding

In a second experiment, we investigated the potential use of

LocOMP in the scalable coding framework proposed by Rav-

elli and Daudet [6]. The 8 kHz signal was decomposed on a

two-scale fully shift-invariant MDCT dictionary with scales

L1 = 32 and L2 = 256, roughly corresponding at 8kHz to
the scales used in AAC encoding at 44.1kHz.

Figure 2 shows the rate/distortion curve of this coding

scheme using MP and LocOMP as a transform. At high rates,

LocOMP coding leads to less distortion thanMP coding, with

a final gain of 1.4dB. However, LocOMP seems to also bring

a degradation at lower rates. Since the considered dictionary

is much smaller than the eight-scale dictionary used in [6],

further work will investigate the influence of the dictionary

choice on the coding performance.

6. CONCLUSION

We proposed a greedy algorithm called LocOMP for compu-

tationally tractable sparse approximation of long signals with

large shift-invariant dictionaries. We have shown on an ex-

ample that its approximation performance is similar to that of

OMP/GP, with a gain of 0.6 dB over MP, while the computa-

tional cost remains 500 times lower than that of OMP. We ex-

pect the approximation gain of LocOMP over MP to be more

significant for dictionaries more adapted to the decomposed

signal (e.g.,L rather of the order of 256, the largest scale used
in AAC codecs), however for such scales it no longer seems

possible to compare the proposed algorithm with OMP/GP,

because of the computational complexity of the latter.

Current work consists in implementing LocOMP as well

as a localized version of Gradient Pursuit in MPTK [5] to

benefit from all other speedup tricks briefly described in this

paper, and we believe this will open the door to large scale

experiments and applications of sparse approximation that so

far seemed unachievable.
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4. LocOMP ALGORITHM

As described above, in shift-invariant dictionarie, simple

tricks allow to significantly reduce the computational com-

plexity of MP compared to a naive implementations. How-

ever, the cost of OMP and GP remains quite high, calling for

modified algorithms to handle real-world large-scale signals,

where the aimed number of atoms I is somewhat lower than
the signal size N , but the latter is large enough to discourage
naive computation (e.g. for one minute of music sampled at 8

kHz, we already haveN ≈ 5 · 105).

The prohibitive costs for OMP and GP are the ones with

strongest dependency in N : as shown in Table 2 the most
costly steps are the correlation computation and maximum

search, which have linear dependency in N . This linear de-
pendency has disappeared in MP by exploiting the locality of

the changes in the residual. This is why we propose an algo-

rithm that only slightly loosens this locality property. To our

knowledge, all approaches to decrease OMP complexity em-

phasize the reduction in the cost of the update step (e.g., by

replacing full matrix inversion by conjugate gradient descent

as in [3]), not the selection step.

The main idea of the proposed LocOMP algorithm is to se-

lect a sub-dictionary Ψi ⊂ Φi containing the last selected

atom ϕi and to orthogonalize the decomposition only on this

sub-dictionary. The algorithm is described in Algorithm 1,

and the key element that determines the behaviour of the al-

gorithm is the neighbour() function that performs the sub-

dictionary selection:

• MP corresponds to neighbour(Φi, ϕi) := ϕi;

• OMP corresponds to neighbour(Φi, ϕi) := Φi;

To decrease the computational cost with respect to OMP, it

is crucial to ensure that the support of Ψχi is small so that

the update of the residual remains localized. In LocOMP,

neighbour(Φi, ϕi) contains exactly all the atoms ϕ ∈ Φi

which support intersects with the support of ϕi. This choice

was mainly led by the observation that, as explained in Sec-

tion 3, this set is already the one that has to be searched for

when updating the Gram matrix. Selecting it as the atom’s

neighbourhood spares another search. Investigating other

possible sub-dictionary selection strategies will be the object

of further work.

5. EXPERIMENTAL RESULTS

LocOMP has been tested and compared to MP, OMP and

GP on an excerpt from the RWC base2. It is a one-minute

mono-channel jazz guitar audio signal downsampled to 8kHz

(N ≈ 5 · 105). Given the high cost of running OMP and

GP for comparison (the total running time for each of these

algorithms in the first experiment below was roughly 5 · 105

2http://staff.aist.go.jp/m.goto/RWC-MDB/

Algorithm 1 x = LocOMP(s,Φ)
r0 = s
Φ0 = ∅
x0 = 0
for i = 1 to I do

ϕi = argmaxϕ∈Φ |〈ri−1, ϕ〉| {selection}
Φi = Φi−1 ∪ ϕi

Ψi = neighbour(Φi, ϕi) {sub-dictionary selection}
χi = (Ψ∗

i Ψi)
−1

Ψ
∗
i ri−1 {coefficients of projection on sub-

dictionary}

xi = xi−1 + χi {update coefficients}

ri = ri−1 − Ψiχi {update residual}

end for

return xI

Fig. 1. SNR depending on the number of iterations
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seconds, or 5.7 days), it was not possible to run experiments
on more than one signal, and this was also the largest sig-

nal dimension we could test. In comparison, the computation

time of LocOMP was 854 seconds or 15 minutes.

5.1. SNR and computation time

In a first experiment, OMP, GP, LocOMP and MP were run

for I = 20000 iterations3 to decompose the signal on a fully
shift-invariant MDCT dictionary of scale L = 32 (therefore
with redundancy factor α = 32) containing αN ≈ 1.5 · 107

atoms. The scale was chosen for it roughly corresponds to

the smallest scale of the windows used in AAC encoding on

44.1 kHz signals, while remaining small enough to make it

possible to actually run OMP and GP.

Figure 1 shows the SNR reached by each algorithm at each

iteration. OMP, GP and LocOMP cannot be distinguished on

this plot. The final SNR for LocOMP after 20000 iterations is
actually only 0.01dB lower than for OMP and GP, while the

final SNR for MP is 0.6dB lower.

3The iterations of the different algorithms were interleaved on the same

process to guarantee that the execution environment remains the same for

each algorithm, and the CPU time used by each iteration was recorded.

N = 5.105 samples,  k= 20 000 iterations



Some algorithms / 
software on the market
• Matlab (simple to adapt, medium scale problems):

✦ L1 minimization with an available toolbox
➡ http://www.l1-magic.org/ (Candès et al.), ...

✦ iterative thresholding 
➡ http://www.morphologicaldiversity.org/ (Starck et al.)

• MPTK : C++, large scale problems  
✦ optimized Matching Pursuit 
✦ millions of unknowns, a few minutes of computation 
✦ several time-frequency dictionaries
✦ builtin multichannel 

➡ http://mptk.irisa.fr

• More on http://www.dsp.rice.edu/cs
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Appendix



Iterative Soft Thresholding 
(IST)

• Theorem : assume 
✦ consider the iterates                                defined 

by the soft thresholding function                       

✦ assume that
✦ whenever                       the iterates converge 

geometrically in L2 norm to the unique local 
minimum     of the BPDN optimization problem

✦ for                             the rate is
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x(i+1) = f(x(i))

f(x) = Sαλ(x + αAT (b−Ax))

x!

a‖x‖2
2 ≤ ‖Ax‖2

2 ≤ b‖x‖2
2,∀x 0 < a ≤ b <∞

α = 2/(b + a)

α = 2/(b + a)
‖x(i) − x!‖2 ≤

(
b− a

b + a

)i

‖x(0) − x!‖2



Convergence of IST (1)

• Soft thresholding satisfies

• Recall that

• Therefore for any x,y
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‖f(x)− f(y)‖q ≤ ‖x− y − αAT A(x− y)‖q

= ‖(Id− αAT A)(x− y)‖q

≤ ‖Id− αAT A‖q→q · ‖x− y‖q

c

Sαλ(c)

αλ

−αλ
|Sαλ(a)− Sαλ(b)| ≤ |a− b|

f(x) = Sαλ(x + αAT (b−Ax))



Convergence of IST (2)

• Assume that for some 

• Fixed point theorem (contracting iterations): 
✦ the sequence      converges in the p-norm to the 

unique solution of the fixed point equation

• The convergence is geometric with rate
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x(i)

β

β := ‖Id− αAT A‖q→q < 1

‖x(i) − x!‖q ≤ βi‖x(0) − x!‖q

1 ≤ q ≤ ∞

x! = f(x!) = Sµ(x! + αAT (b−Ax!))



Convergence of IST (3)

• Set q=2. By assumption, in the sense of 
symmetric matrices

• The condition                                   is 
equivalent to

•  The optimum is reached for
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aId ≤ AT A ≤ bId
(1− αb)Id ≤ Id− αAT A ≤ (1− αa)Id

max(|1− αb|, |1− αa|) < 1
0 < α < 2/b

β = ‖Id− αAT A‖2→2 < 1

β =
b− a

b + a

α =
2

b + a



Proof of the Lemma 

•       =matrix with columns of     indexed by I

• The restricted vector      is a local minimum of

• Since      has no zero entry, the objective function 
is smooth at      and its gradient must be zero 

• A similar analysis yields the second condition
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x!
I

AI A

x!
I

x!
I

AT
I (AIx

!
I − b) + λ · sign(x!

I) = 0

arg min
x̄

1
2
‖AI x̄− b‖2

2 + λ‖x̄‖1

‖AT
Ic(Ax! − b)‖∞ < λ



Limit of IST (2)

•      = any local minimum of BPDN

• I = support of 

• For indices in I we have

• For indices not in I we have

• Therefore     is the unique fixed point 
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αAT
I (b−Ax!) = αλsign(x!

I)
x!

I + αAT
I (b−Ax!) = (|x!

I | + αλ)sign(x!
I)

Sαλ(x#
I + αAT

I (b−Ax#)) = |x#
I |sign(x#

I) = x#
I

Sαλ(x#
Ic + αAT

Ic(b−Ax#)) = Sαλ(αAT
Ic(b−Ax#))

= 0 = x!
Ic

x!

x!

x!



Limit of IST (3)

• We conclude that

✦       was any local minimum of BPDN
✦ it must be the unique fixed point 
✦ therefore, there is a unique local minimum of 

BPDN, which is the limit of IST.
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x! = f(x!) = Sαλ(x! + αAT (b−Ax!))

x!



Homotopy method

• For any sign pattern s, define              as 
above, which varies affinely with 

• If                                                then 

✦ the strict inequality remains true for     close 
to   , meaning that in a neighborhood of    the 
solution to BPDN is indeed

✦ the sign pattern is therefore piecewise constant  
✦ breakpoint occur where 
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xI = (AT
I AI)−1

(
AT

I b− λ · sign(xI)
)

xIc = 0
x!(λ, s)

‖AT
I(s)c(Ax!(λ, s)− b)‖∞ < λ

λ′

λ λ
x!(λ, s)

λ

‖AT
I(s)c(Ax!(λ, s)− b)‖∞ = λ



Homotopy algorithm

• For                   the solution is               with 
sign pattern            ; set              and k=0

• Determine the next breakpoint:         is the 
largest value of            such that either
✦ a component of                   vanishes
✦ a component violates the inequality  

• Determine the sign pattern         for
✦ some components may go to zero
✦ some new components may enter
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x! = 0

sk+1 λ ! λk

λ <λ k

λ > ‖AT b‖∞
λ0 =∞s0 = 0

λk+1

x!
Ik

(λ, sk)

‖AT
Ic

k
(Ax!(λ, sk)− b)‖∞ < λ


