Pursuit Algorithms for Sparse Approximation

Rémi Gribonval
METISS project-team (audio signal processing, speech recognition, source separation)
INRIA, Rennes, France

I R I S A

UNE UNITÉ DE RECHERCHE À LA POINTE DES SCIENCES
ET DES TECHNOLOGIES DE L'INFORMATION
ET DE LA COMMUNICATION

Ecole d'été en Traitement du Signal
Peyresq, Juillet 2009

Overview

- Complexity of ideal sparse approximation
- Convex optimization
- Greedy algorithms
- Nonconvex optimization ?

Ideal sparse approximation

- Input: $m \times N$ matrix \mathbf{A}, with $m<N, m$-dimensional vector \mathbf{b}
- Possible objectives:
find the sparsest approximation within tolerance

$$
\arg \min _{x}\|x\|_{0}, \text { s.t. }\|\mathbf{b}-\mathbf{A} x\| \leq \epsilon
$$

find best approximation with given sparsity

$$
\arg \min _{x}\|\mathbf{b}-\mathbf{A} x\|, \text { s.t. }\|x\|_{0} \leq k
$$

find a solution x to

$$
\|\mathbf{b}-\mathbf{A} x\| \leq \epsilon, \text { and }\|x\|_{0} \leq k
$$

Geometric interpretation of sparse approximation

- Coefficient domain \mathbb{R}^{N} :
- set Σ_{k} of sparse vectors

$$
\|x\|_{0} \leq k
$$

$\binom{N}{k}$ subspaces

- Set $\mathbf{A} \Sigma_{k}=\binom{N}{k}$ subspaces in signal domain
- Ideal sparse approximation = find nearest subspace among $\binom{N}{k}$

Combinatorial search! Actual complexity ?

Complexity

Complexity

- Polynomial algorithm: given input of size N, compute output in cost poly (N)
- Polynomial problem (is in \mathbf{P}): there is a polynomial algorithm which can compute the solution to each instance of the problem
- Example:
- problem: find the nearest neighbor to an m dimensional vector from a collection of N such vectors
- input size $=m \times(N+1)$
+ complexity $=\mathrm{O}(\mathrm{Nm})\left[\mathrm{N}\right.$ distances in $\left.\mathbb{R}^{m}\right]$

Complexity: NP

- Decision problem: of the type "does there exist x satisfying a given set of constraints"
- Non-deterministic polynomial decision problems (in NP): if there is a polynomial algorithm which can check for any instance of the problem if a candidate solution x satisfies the constraint.
* warning: the algorithm is not required to find a solution. It merely has to check if a solution x (given by an "oracle") is acceptable.

Complexity: NP-complete

- Reduction: every instance of Problem A can be transformed into an instance of Problem B in polynomial time A "less complex" than B
- NP-hard problem: Problem B such that every Problem A in NP can be reduced to B.
- NP-complete problems: NP-hard + in NP
- Fact: there exists at least one NP-complete problem (satisfiability problem = SAT)

Complexity of sparse approximation

- Step I: express it as a decision problem:
+ description of an instance
$m \times N$ matrix \mathbf{A}, m-dimensional vector \mathbf{b}, parameters (ϵ, k)
- size of an instance $=$ approximately mN
- decision problem: does there exists x such that

$$
\|\mathbf{b}-\mathbf{A} x\| \leq \epsilon, \text { and }\|x\|_{0} \leq k
$$

- Step 2: prove it is in NP. Indeed, one can check in polynomial time $O(\mathrm{mN})$ whether a given x satisfies the constraints
- Step 3: reduce an existing problem to it to show it is NP-complete

NP-completeness of

sparse approximation

- Which known NP-complete problem? Exact-cover by 3-sets [Davis \& al 1997]
(other approach in [Natarajan 1995])
- Description of an instance:
* The integer interval $E=\llbracket 1,3 k \rrbracket$
* A collection of subsets of size 3
$C=\left\{F_{n}, 1 \leq n \leq N\right\}, F_{n} \subset E, \sharp F_{n}=3$
- Decision problem:
* does there exist an exact cover (=disjoint partition) of E from elements of C ?
$\exists ? \Lambda, \cup_{n \in \Lambda} F_{n}=E$

$$
n \neq n^{\prime} \in \Lambda \Rightarrow F_{n} \cap F_{n^{\prime}}=\emptyset
$$

NP-completeness

- Reduction of 3-SETS to sparse approximation
+ $m=3 k$
+ vector $\mathbf{b}=\left(b_{i}\right)_{i=1}^{m} \quad b_{i}=1, \forall i$
+ matrix $\mathbf{A}=\left(a_{i n}\right)_{1 \leq i \leq m, 1 \leq n \leq N}$

$$
a_{i n}= \begin{cases}1, & i \in F_{n} \\ 0, & \text { otherwise }\end{cases}
$$

+ tolerance $\epsilon<1$
- Exact cover implies existence of x such that

$$
\|\mathbf{b}-\mathbf{A} x\| \leq \epsilon, \text { and }\|x\|_{0} \leq k
$$

- Non-exact cover implies the opposite

Practical approaches: Optimization principles

Overall compromise

- Approximation quality

$$
\|\mathbf{A} x-\mathbf{b}\|_{2}
$$

- Ideal sparsity measure : ℓ^{0} "norm"

$$
\|x\|_{0}:=\sharp\left\{n, x_{n} \neq 0\right\}=\sum_{n}\left|x_{n}\right|^{0}
$$

- "Relaxed" sparsity measures

$$
0<p<\infty,\|x\|_{p}:=\left(\sum_{n}\left|x_{n}\right|^{p}\right)^{1 / p}
$$

Lp norms / quasi-norms

- Norms when $1 \leq p<\infty \quad=$ convex

$$
\begin{aligned}
& \|x\|_{p}=0 \Leftrightarrow x=0 \\
& \|\lambda x\|_{p}=|\lambda|\|x\|_{p}, \forall \lambda, x
\end{aligned}
$$

Triangle inequality

$$
\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}, \forall x, y
$$

- Quasi-norms when $0<p<1=$ nonconvex

Quasi-triangle $\quad\|x+y\|_{p} \leq 2^{1 / p}\left(\|x\|_{p}+\|y\|_{p}\right), \forall x, y$ inequality

$$
\|x+y\|_{p}^{p} \leq\|x\|_{p}^{p}+\|y\|_{p}^{p}, \forall x, y
$$

- "Pseudo"-norm for $\mathrm{p}=0$

$$
\|x+y\|_{0} \leq\|x\|_{0}+\|y\|_{0}, \forall x, y
$$

Optimization problems

- Approximation

$$
\min _{x}\|\mathbf{b}-\mathbf{A} x\|_{2} \text { s.t. }\|x\|_{p} \leq \tau
$$

- Sparsification

$$
\min _{x}\|x\|_{p} \text { s.t. }\|\mathbf{b}-\mathbf{A} x\|_{2} \leq \epsilon
$$

- Regularization

$$
\min _{x} \frac{1}{2}\|\mathbf{b}-\mathbf{A} x\|_{2}+\lambda\|x\|_{p}
$$

Lp "norms" level sets

- Strictly convex when $p>1$

- Convex $p=1$

Observation: the minimizer is sparse

$$
-\{x \text { s.t. } \mathbf{b}=\mathbf{A} x\}
$$

Sparsity of L1 minimizers

- Real-valued case
- $\mathbf{A}=$ an $m \times N$ real-valued matrix
- $\mathbf{b}=$ an m-dimensional real-valued vector
- $\mathbf{X}=$ set of all minimum L1 norm solutions to $\mathbf{A} x=\mathbf{b}$
$\tilde{x} \in X \Leftrightarrow\|\tilde{x}\|_{1}=\min \|x\|_{1}$ s.t. $\mathbf{A} x=\mathbf{b}$
- Fact I: X is convex and contains a "sparse" solution

$$
\exists x_{0} \in X,\left\|x_{0}\right\|_{0} \leq m
$$

- Proof : exercice!

Sparsity of L1 minimizers

- Real-valued case
- $\mathbf{A}=$ an $m \times N$ real-valued matrix
- $\mathbf{b}=$ an m-dimensional real-valued vector
- $X=$ set of al solutions to regularization problem

$$
\begin{gathered}
\mathcal{L}(x):=\frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{1} \\
\tilde{x} \in X \Leftrightarrow \mathcal{L}(\tilde{x})=\min _{x} \mathcal{L}(x)
\end{gathered}
$$

- Fact 2: X is a convex set and contains a "sparse" solution

$$
\exists x_{0} \in X,\left\|x_{0}\right\|_{0} \leq m
$$

- Proof : exercice, using Fact I!

Sparsity of L1 minimizers

- A word of caution: this does not hold true in the complex-valued case
- Counter example: there is a construction where
- $\mathbf{A}=\mathrm{a} 2 \times 3$ complex-valued matrix
- $\mathbf{b}=$ a 2-dimensional complex-valued vector
- the minimum L1 norm solution is unique and has 3 nonzero components
[E.Vincent, Complex Nonconvex Optimization I_p norm minimization for underdetermined source separation, Proc. ICA 2007.]

Global Optimization : from Principles to Algorithms

- Optimization principle $\min _{x} \frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{p}^{p}$
+ Sparse representation $\quad \lambda \rightarrow 0 \quad \mathbf{A} x=\mathbf{b}$
+ Sparse approximation $\lambda>0 \quad \mathbf{A} x \approx \mathbf{b}$

Linear

Lasso [Tibshirani 1996], Basis Pursuit (Denoising) [Chen, Donoho \& Saunders, 1999] Linear/Quadratic programming (interior point, etc.)
Homotopy method [Osborne 2000] / Least Angle Regression [Efron \&al 2002] Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes \& Pesquet 2008, ...]

Algorithms for LI: Linear Programming

- LI minimization problem of size $m \times N$

Basis Pursuit (BP) LASSO

$$
\min _{x}\|x\|_{1}, \text { s.t. } \mathbf{A} x=\mathbf{b}
$$

- Equivalent linear program of size $m \times 2 N$

$$
\begin{aligned}
& \min _{z \geq 0} \mathbf{c}^{T} z, \text { s.t. }[\mathbf{A},-\mathbf{A}] z=\mathbf{b} \\
& \quad \mathbf{c}=\left(c_{i}\right), c_{i}=1, \forall i
\end{aligned}
$$

LI regularization:
 Quadratic Programming

- LI minimization problem of size $m \times N$

Basis Pursuit Denoising (BPDN)

$$
\min _{x} \frac{1}{2}\|\mathbf{b}-\mathbf{A} x\|_{2}^{2}+\lambda\|x\|_{1}
$$

- Equivalent quadratic program of size $m \times 2 N$

$$
\begin{aligned}
& \min _{z \geq 0} \frac{1}{2}\|\mathbf{b}-[\mathbf{A},-\mathbf{A}] z\|_{2}^{2}+\mathbf{c}^{T} z \\
& \quad \mathbf{c}=\left(c_{i}\right), \quad c_{i}=1, \forall i
\end{aligned}
$$

Generic approaches vs specific algorithms

- There is a vast literature on linear / quadratic programming algorithms
- Can use linprog in Matlab
- But ...
+ The problem size is "doubled"
- Specific structures of the matrix A can help solve BP and BPDN more efficiently
- More efficient toolboxes have been developed

Optimization algorithms

Example: orthonormal \mathbf{A}

- Assumption : $m=N$ and \mathbf{A} is orthonormal

$$
\begin{aligned}
& \mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T}=\mathbf{I d}_{N} \\
& \|\mathbf{b}-\mathbf{A} x\|_{2}^{2}=\left\|\mathbf{A}^{T} \mathbf{b}-x\right\|_{2}^{2}
\end{aligned}
$$

- Expression of BPDN criterion to be minimized

$$
\sum_{n} \frac{1}{2}\left(\left(\mathbf{A}^{T} \mathbf{b}\right)_{n}-x_{n}\right)^{2}+\lambda\left|x_{n}\right|^{p}
$$

- Minimization can be done coordinate-wise

$$
\min _{x_{n}} \frac{1}{2}\left(c_{n}-x_{n}\right)^{2}+\lambda\left|x_{n}\right|^{p}
$$

Hard-thresholding ($\mathrm{p}=0$)

- Solution of

$$
\min _{x} \frac{1}{2}(c-x)^{2}+\lambda \cdot|x|^{0}
$$

Soft-thresholding ($\mathrm{p}=\mathrm{I}$)

$S_{\lambda}(c)$

- Solution of

$$
\min _{x} \frac{1}{2}(c-x)^{2}+\lambda \cdot|x|
$$

Iterative thresholding

- Proximity operator

$$
\Theta_{\lambda}^{p}(c)=\arg \min _{x} \frac{1}{2}(x-c)^{2}+\lambda|x|^{p}
$$

- Goal = compute

$$
\arg \min _{x} \frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{p}^{p}
$$

- Approach $=$ iterative alternation between
+ gradient descent on fidelity term

$$
x^{(i+1 / 2)}:=x^{(i)}+\alpha^{(i)} \mathbf{A}^{T}\left(\mathbf{b}-\mathbf{A} x^{(i)}\right)
$$

- thresholding

$$
x^{(i+1)}:=\Theta_{\lambda(i)}^{p}\left(x^{(i+1 / 2)}\right)
$$

Iterative Thresholding

- Theorem : [Daubechies, de Mol Defrise 2004, Combettes $\&$ Pesquet 2008]
- consider the iterates $x^{(i+1)}=f\left(x^{(i)}\right)$ defined by the thresholding function, with $p \geq 1$

$$
f(x)=\Theta_{\alpha \lambda}^{p}\left(x+\alpha \mathbf{A}^{T}(\mathbf{b}-\mathbf{A} x)\right)
$$

- assume that $\forall x,\|\mathbf{A} x\|_{2}^{2} \leq c\|x\|_{2}^{2}$ and $\alpha<2 / c$
- then, the iterates converge strongly to a limit x^{\star}

$$
\left\|x^{(i)}-x^{\star}\right\|_{2} \rightarrow_{i \rightarrow \infty} 0
$$

- the limit x^{\star} is a global minimum of $\frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{p}^{p}$
- if $p>I$, or if \mathbf{A} is invertible, x^{\star} is the unique minimum

Pareto curve

Path of the solution

- Lemma: let x^{\star} be a local minimum of BPDN

$$
\arg \min _{x} \frac{1}{2}\|\mathbf{A} x-\mathbf{b}\|_{2}^{2}+\lambda\|x\|_{1}
$$

- let I be its support
- Then $\quad \mathbf{A}_{I}^{T}\left(\mathbf{A} x^{\star}-\mathbf{b}\right)+\lambda \cdot \operatorname{sign}\left(x_{I}^{\star}\right)=0$

$$
\left\|\mathbf{A}_{I^{c}}^{T}\left(\mathbf{A} x^{\star}-\mathbf{b}\right)\right\|_{\infty}<\lambda
$$

- In particular

$$
x_{I}=\left(\mathbf{A}_{I}^{T} \mathbf{A}_{I}\right)^{-1}\left(\mathbf{A}_{I}^{T} \mathbf{b}-\lambda \cdot \operatorname{sign}\left(x_{I}\right)\right)
$$

Homotopy method

- Principle: track the solution $x^{\star}(\lambda)$ of BPDN along the Pareto curve
- Property:
- solution is characterized by its sign pattern through

$$
x_{I}=\left(\mathbf{A}_{I}^{T} \mathbf{A}_{I}\right)^{-1}\left(\mathbf{A}_{I}^{T} \mathbf{b}-\lambda \cdot \operatorname{sign}\left(x_{I}\right)\right)
$$

- for given sign pattern, dependence on λ is affine
- sign patterns are piecewise constant functions of λ
- overall, the solution is piecewise affine
- Method = iteratively find breakpoints

Greedy Algorithms

Greedy algorithms

- Observation: when \mathbf{A} is orthormal,
- the problem

$$
\min _{x}\|\mathbf{b}-\mathbf{A} x\|_{2}^{2} \text { s.t. }\|x\|_{0} \leq k
$$

- is equivalent to

$$
\min _{x} \sum_{n}\left(\mathbf{A}_{n}^{T} \mathbf{b}-x_{n}\right)^{2} \text { s.t. }\|x\|_{0} \leq k
$$

- Let Λ_{k} index the k largest inner products

$$
\min _{n \in \Lambda_{k}}\left|\mathbf{A}_{n}^{T} \mathbf{b}\right| \geq \max _{n \notin \Lambda_{k}}\left|\mathbf{A}_{n}^{T} \mathbf{b}\right|
$$

- an optimum solution is

$$
x_{n}=\mathbf{A}_{n}^{T} \mathbf{b}, n \in \Lambda_{k} ; x_{n}=0, n \notin \Lambda_{k}
$$

Greedy algorithms

- Iterative algorithm (= Matching Pursuit)
+ Initialize a residual to $\mathbf{r}_{0}=\mathbf{b} \quad i=1$
- Compute all inner products

$$
\mathbf{A}^{T} \mathbf{r}_{i-1}=\left(\mathbf{A}_{n}^{T} \mathbf{r}_{i-1}\right)_{n=1}^{N}
$$

- Select the largest in magnitude

$$
n_{i}=\arg \max _{n}\left|\mathbf{A}_{n}^{T} \mathbf{r}_{i-1}\right|
$$

- Compute an updated residual

$$
\mathbf{r}_{i}=\mathbf{r}_{i-1}-\left(\mathbf{A}_{n_{i}}^{T} \mathbf{r}_{i-1}\right) \mathbf{A}_{n_{i}}
$$

- If $i \geq k$ then stop, otherwise increment i and iterate

Dictionaries and atoms

- Convention on $m \times N$ matrix \mathbf{A}
+ normalized columns: $\quad\left\|\mathbf{A}_{n}\right\|_{2}=1, \forall n$
+ complete column span: $\operatorname{span}\left(\mathbf{A}_{n}, 1 \leq n \leq N\right)=\mathbb{R}^{m}$
- in particular:
$m \leq N$
- Vocabulary:
+ A is called a signal dictionary
+ columns are called atoms

Matching Pursuit (MP)

- Matching Pursuit (aka Projection Pursuit, CLEAN)
- Initialization $\mathbf{r}_{0}=\mathbf{b} \quad i=1$
- Atom selection:

$$
n_{i}=\arg \max _{n}\left|\mathbf{A}_{n}^{T} \mathbf{r}_{i-1}\right|
$$

- Residual update

$$
\mathbf{r}_{i}=\mathbf{r}_{i-1}-\left(\mathbf{A}_{n_{i}}^{T} \mathbf{r}_{i-1}\right) \mathbf{A}_{n_{i}}
$$

- Energy preservation (Pythagoras theorem)

$$
\left\|\mathbf{r}_{i-1}\right\|_{2}^{2}=\left|\mathbf{A}_{n_{i}}^{T} \mathbf{r}_{i-1}\right|^{2}+\left\|\mathbf{r}_{i}\right\|_{2}^{2}
$$

Main properties

- Global energy preservation

$$
\|\mathbf{b}\|_{2}^{2}=\left\|\mathbf{r}_{0}\right\|_{2}^{2}=\sum_{i=1}^{k}\left|\mathbf{A}_{n_{i}}^{T} \mathbf{r}_{i-1}\right|^{2}+\left\|\mathbf{r}_{k}\right\|_{2}^{2}
$$

- Global reconstruction

$$
\mathbf{b}=\mathbf{r}_{0}=\sum_{i=1}^{k} \mathbf{A}_{n_{i}}^{T} \mathbf{r}_{i-1} \mathbf{A}_{n_{i}}+\mathbf{r}_{k}
$$

- Strong convergence

$$
\lim _{i \rightarrow \infty}\left\|\mathbf{r}_{i}\right\|_{2}=0
$$

Orthonormal MP (OMP)

- Observation: after \mathbf{k} iterations $\quad \mathbf{r}_{k}=\mathbf{b}-\sum_{i=1}^{k} \alpha_{k} \mathbf{A}_{n_{i}}$
- Approximant belongs to

$$
\begin{aligned}
& V_{k}=\operatorname{span}\left(\mathbf{A}_{n}, n \in \Lambda_{k}\right) \\
& \Lambda_{k}=\left\{n_{i}, 1 \leq i \leq k\right\}
\end{aligned}
$$

- Best approximation from $V_{k}=$ orthoprojection

$$
P_{V_{k}} \mathbf{b}=\mathbf{A}_{\Lambda_{k}} \mathbf{A}_{\Lambda_{k}}^{+} \mathbf{b}
$$

- OMP residual update rule $\mathbf{r}_{k}=\mathbf{b}-P_{V_{k}} \mathbf{b}$

OMP

- Same as MP, except residual update rule + Atom selection:

$$
n_{i}=\arg \max _{n}\left|\mathbf{A}_{n}^{T} \mathbf{r}_{i-1}\right|
$$

- Index update $\Lambda_{i}=\Lambda_{i-1} \cup\left\{n_{i}\right\}$
+ Residual update

$$
\begin{aligned}
V_{i} & =\operatorname{span}\left(\mathbf{A}_{n}, n \in \Lambda_{i}\right) \\
\mathbf{r}_{i} & =\mathbf{b}-P_{V_{i}} \mathbf{b}
\end{aligned}
$$

- Property : strong convergence $\lim _{i \rightarrow \infty}\left\|\mathbf{r}_{i}\right\|_{2}=0$

Weak Pursuits

- Sometimes the following optimization is too complex

$$
n_{i}=\arg \max _{n}\left|\mathbf{A}_{n}^{T} \mathbf{r}_{i-1}\right|
$$

- Weak selection : pick any atom such that

$$
\left|\mathbf{A}_{n_{i}}^{T} \mathbf{r}_{i-1}\right| \geq t \sup _{n}\left|\mathbf{A}_{n}^{T} \mathbf{r}_{i-1}\right|
$$

- Convergence is preserved [Temlyakor]

Convergence rate

- Observation:
- the quantity $\|\mathbf{r}\|_{\mathbf{A}}=\sup _{n}\left|\mathbf{A}_{n}^{T} \mathbf{r}\right|$ is a norm
- by equivalence of all norms in finite dimension

$$
\exists c>0, \forall \mathbf{r},\|\mathbf{r}\|_{\mathbf{A}} \geq c\|\mathbf{r}\|_{2}
$$

- At each iteration

$$
\begin{aligned}
\left\|\mathbf{r}_{i}\right\|_{2}^{2} & \leq\left\|\mathbf{r}_{i-1}\right\|_{2}^{2}-t^{2}\left\|\mathbf{r}_{i-1}\right\|_{\mathbf{A}}^{2} \\
& \leq\left\|\mathbf{r}_{i-1}\right\|_{2}^{2}-t^{2} c^{2}\left\|\mathbf{r}_{i-1}\right\|_{2}^{2} \\
& \leq\left(1-t^{2} c^{2}\right)^{i}\left\|\mathbf{r}_{0}\right\|_{2}^{2}
\end{aligned}
$$

Caveats (I)

- MP can pick up the same atom more than once
- OMP will never select twice the same atom

Caveats (I)

- MP can pick up the same atom more than once
- OMP will never select twice the same atom

Caveats (I)

- MP can pick up the same atom more than once
- OMP will never select twice the same atom

Caveats (I)

- MP can pick up the same atom more than once
- OMP will never select twice the same atom

Caveats (I)

- MP can pick up the same atom more than once
- OMP will never select twice the same atom

Caveats (I)

- MP can pick up the same atom more than once
- OMP will never select twice the same atom

Caveats (I)

- MP can pick up the same atom more than once
- OMP will never select twice the same atom

Caveats (2)

- "Improved" atom selection does not necessarily improve convergence
- There exists two dictionaries \mathbf{A} and \mathbf{B}
- Best atom from B at step i:

$$
n_{i}=\arg \max _{n}\left|\mathbf{B}_{n}^{T} \mathbf{r}_{i-1}\right|
$$

- Better atom from \mathbf{A}

$$
\left|\mathbf{A}_{\ell_{i}}^{T} \mathbf{r}_{i-1}\right| \geq\left|\mathbf{B}_{n}^{T} \mathbf{r}_{i-1}\right|
$$

- Residual update

$$
\mathbf{r}_{i}=\mathbf{r}_{i-1}-\left(\mathbf{A}_{\ell_{i}}^{T} \mathbf{r}_{i-1}\right) \mathbf{A}_{\ell_{i}}
$$

- Divergence! $\exists c>0, \forall i,\left\|\mathbf{r}_{i}\right\|_{2} \geq c$

Stagewise greedy algorithms

- Principle $=$ select multiple atoms at a time to accelerate the process
- Example of such algorithms
+ Morphological Component Analysis [MCA, Bobin et al]
+ Stagewise OMP [Donoho \& al]
- CoSAMP [Needell \& Tropp]
- ROMP [Needell \& Vershynin]
+ Iterative Hard Thresholding [Blumensath \& Davies 2008]

Main greedy algorithms

$$
\mathbf{b}=\mathbf{A} x_{i}+\mathbf{r}_{i}
$$

$$
\mathbf{A}=\left[\mathbf{A}_{1}, \ldots \mathbf{A}_{N}\right]
$$

	Matching Pursuit	OMP	Stagewise
Selection	$\Gamma_{i}:=\arg \max _{n}\left\|\mathbf{A}_{n}^{T} \mathbf{r}_{i-1}\right\|$		$\Gamma_{i}:=\left\{n\| \| \mathbf{A}_{n}^{T} \mathbf{r}_{i-1} \mid>\theta_{i}\right\}$
Update	$x_{i}=\Lambda_{i-1} \cup \Gamma_{i}$	$\Lambda_{i}=\Lambda_{i-1} \cup \Gamma_{i}$	
	$\mathbf{r}_{i}=\mathbf{A}_{\Gamma_{i-1}}^{+} \mathbf{r}_{i-1}$	$\mathbf{A}_{\Gamma_{i}} \mathbf{A}_{\Gamma_{i}}^{+} \mathbf{r}_{i-1}$	$x_{i}=\mathbf{A}_{\Lambda_{i}}^{+} \mathbf{b}$ $\mathbf{r}_{i}=\mathbf{b}-\mathbf{A}_{\Lambda_{i}} x_{i}$

MP \& OMP: Mallat \& Zhang 1993
StOMP: Donoho \& al 2006 (similar to MCA, Bobin \& al 2006)

Summary

Iterative greedy algorithms

Principle	$\min _{x} \frac{1}{2}\\|\mathbf{A} x-\mathbf{b}\\|_{2}^{2}+\lambda\\|x\\|_{p}^{p}$	iterative decomposition $\mathbf{r}_{i}=\mathbf{b}-\mathbf{A} x$ - select new components - update residual
Tuning quality/sparsity	regularization parameter λ	stopping criterion (nb of iterations, error level, ...) $\left\\|x_{i}\right\\|_{0} \geq k \quad\left\\|\mathbf{r}_{i}\right\\| \leq \epsilon$
Variants	- choice of sparsity measure p - optimization algorithm - initialization	-selection criterion (weak, stagewise ...) -update strategy (orthogonal ...)

Complexity of IST

- Notation: $O(\mathbf{A})$ cost of applying \mathbf{A} or \mathbf{A}^{T}
- Iterative Thresholding $f(x)=\Theta_{\alpha \lambda}^{p}\left(x+\alpha \mathbf{A}^{T}(\mathbf{b}-\mathbf{A} x)\right)$ - cost per iteration $=O(\mathbf{A})$
- when \mathbf{A} invertible, linear convergence at rate

$$
\left\|x^{(i)}-x^{\star}\right\|_{2} \lesssim C \beta^{i}\left\|x^{\star}\right\|_{2} \quad \beta \leq 1-\frac{\sigma_{\min }^{2}}{\sigma_{\max }^{2}}
$$

- number of iterations guaranteed to approach limit within relative precision ϵ

$$
O(\log 1 / \epsilon)
$$

- Limit depends on choice of penalty factor λ, added complexity to \mathbf{q}_{88} adjust it

Complexity of MP

- Number of iterations depends on stopping criterion $\left\|\mathbf{r}_{i}\right\|_{2} \leq \epsilon,\left\|x_{i}\right\|_{0} \geq k$
- Cost of first iteration $=$ atom selection $O(\mathbf{A})$ (computation of all inner products)
- Naive cost of subsequent iterations $=O(\mathbf{A})$
- If "local" structure of dictionary [Krstulovic \& al, MPTK]
- subsequent iterations only cost $O(\log N)$

	Generic \mathbf{A}	Local \mathbf{A}
k iterations	$O(k \mathbf{A}) \geq O(k m)$	$O(\mathbf{A}+k \log N)$
$k \propto m$	$O\left(m^{2}\right)$	$O(m \log N)$

Complexity of OMP

- Number of iterations depends on stopping criterion

$$
\left\|\mathbf{r}_{i}\right\|_{2} \leq \epsilon,\left\|x_{i}\right\|_{0} \geq k
$$

- Naive cost of iteration i
- atom selection $O(\mathbf{A})+$ orthoprojection $O\left(i^{3}\right)$
- With iterative matrix inversion lemma + atom selection $O(\mathbf{A})+$ coefficient update $O(i)$
- If "local" structure of dictionary [Mailhé \& al, LocOMP]
+ subsequent approximate iterations only cost $O(\log N)$

	Generic \mathbf{A}	Local \mathbf{A}
k iterations	$O\left(k \mathbf{A}+k^{2}\right)$	$O(\mathbf{A}+k \log N)$
$k \propto m$	$O\left(m^{3}\right)$	$O(m \log N)$

LoCOMP

- A variant of OMP for shift invariant dictionaries (Ph.D. thesis of Boris Mailhé, ICASSP09)

Fig. 1. SNR depending on the number of iterations

$N=5.10^{5}$ samples, $k=20000$ iterations

Table 3. CPU time per iteration (s)				
Iteration	MP	LocOMP	GP	OMP
First $(i=0)$	3.4	3.4	3.4	3.5
Begin $(i \approx 1)$	0.028	0.033	3.4	3.4
End $(i \approx I)$	0.028	0.050	40.5	41
Total time	571	854	$4.50 \cdot 10^{5}$	$4.52 \cdot 10^{5}$

- Implementation in MPTK in progress for larger scale experiments, collaboration with T. Blumensath

Some algorithms /

software on the market

- Matlab (simple to adapt, medium scale problems):
- LI minimization with an available toolbox
- http://www.I1-magic.org/ (Candès et al.)....
- iterative thresholding
- http://www.morphologicaldiversity.org/ (Starck et al.)
- MPTK : C++, large scale problems
+ optimized Matching Pursuit
- millions of unknowns, a few minutes of computation
- several time-frequency dictionaries
- builtin multichannel
- http://mptk.irisa.fr
- More on http://www.dsp.rice.edu/cs

Appendix

Iterative Soft Thresholding (IST)

- Theorem : assume
- consider the iterates $x^{(i+1)}=f\left(x^{(i)}\right)$ defined by the soft thresholding function

$$
f(x)=S_{\alpha \lambda}\left(x+\alpha \mathbf{A}^{T}(\mathbf{b}-\mathbf{A} x)\right)
$$

- assume that $a\|x\|_{2}^{2} \leq\|\mathbf{A} x\|_{2}^{2} \leq b\|x\|_{2}^{2}, \forall x \quad 0<a \leq b<\infty$
- whenever $\alpha=2 /(b+a)$ the iterates converge geometrically in $L 2$ norm to the unique local minimum x^{\star} of the BPDN optimization problem
- for $\alpha=2 /(b+a)$ the rate is

$$
\left\|x^{(i)}-x^{\star}\right\|_{2} \leq\left(\frac{b-a}{b+a}\right)^{i}\left\|x^{(0)}-x^{\star}\right\|_{2}
$$

Convergence of IST (I)

$$
S_{\alpha \lambda}(c)
$$

- Soft thresholding satisfies

$$
\left|S_{\alpha \lambda}(a)-S_{\alpha \lambda}(b)\right| \leq|a-b|
$$

- Recall that

$$
f(x)=S_{\alpha \lambda}\left(x+\alpha \mathbf{A}^{T}(\mathbf{b}-\mathbf{A} x)\right)
$$

- Therefore for any x, y

$$
\begin{aligned}
\|f(x)-f(y)\|_{q} & \leq\left\|x-y-\alpha \mathbf{A}^{T} \mathbf{A}(x-y)\right\|_{q} \\
& =\left\|\left(\mathbf{I} \mathbf{d}-\alpha \mathbf{A}^{T} \mathbf{A}\right)(x-y)\right\|_{q} \\
& \leq\left\|\mathbf{I d}-\alpha \mathbf{A}^{T} \mathbf{A}\right\|_{q \rightarrow q} \cdot\|x-y\|_{q}
\end{aligned}
$$

Convergence of IST (2)

- Assume that for some $1 \leq q \leq \infty$

$$
\beta:=\left\|\mathbf{I} \mathbf{d}-\alpha \mathbf{A}^{T} \mathbf{A}\right\|_{q \rightarrow q}<1
$$

- Fixed point theorem (contracting iterations):
- the sequence $x^{(i)}$ converges in the p-norm to the unique solution of the fixed point equation

$$
x^{\star}=f\left(x^{\star}\right)=S_{\mu}\left(x^{\star}+\alpha \mathbf{A}^{T}\left(\mathbf{b}-\mathbf{A} x^{\star}\right)\right)
$$

- The convergence is geometric with rate β

$$
\left\|x^{(i)}-x^{\star}\right\|_{q} \leq \beta^{i}\left\|x^{(0)}-x^{\star}\right\|_{q}
$$

Convergence of IST (3)

- Set $q=2$. By assumption, in the sense of symmetric matrices

$$
\begin{aligned}
a \mathbf{I d} & \leq \mathbf{A}^{T} \mathbf{A} \leq b \mathbf{I} \mathbf{d} \\
(1-\alpha b) \mathbf{I d} & \leq \mathbf{I} \mathbf{d}-\alpha \mathbf{A}^{T} \mathbf{A} \leq(1-\alpha a) \mathbf{I} \mathbf{d}
\end{aligned}
$$

- The condition $\beta=\left\|\mathbf{I d}-\alpha \mathbf{A}^{T} \mathbf{A}\right\|_{2 \rightarrow 2}<1$ is equivalent to $\max (|1-\alpha b|,|1-\alpha a|)<1$

$$
0<\alpha<2 / b
$$

- The optimum is reached for $\alpha=\frac{2}{b+a}$

$$
\beta=\frac{b-a}{b+a}
$$

Proof of the Lemma

- $\mathbf{A}_{I}=$ matrix with columns of \mathbf{A} indexed by I
- The restricted vector x_{I}^{\star} is a local minimum of

$$
\arg \min _{\bar{x}} \frac{1}{2}\left\|\mathbf{A}_{I} \bar{x}-\mathbf{b}\right\|_{2}^{2}+\lambda\|\bar{x}\|_{1}
$$

- Since x_{I}^{\star} has no zero entry, the objective function is smooth at x_{I}^{\star} and its gradient must be zero

$$
\mathbf{A}_{I}^{T}\left(\mathbf{A}_{I} x_{I}^{\star}-\mathbf{b}\right)+\lambda \cdot \operatorname{sign}\left(x_{I}^{\star}\right)=0
$$

- A similar analysis yields the second condition

$$
\left\|\mathbf{A}_{I^{c}}^{T}\left(\mathbf{A} x^{\star}-\mathbf{b}\right)\right\|_{\infty}<\lambda
$$

Limit of IST (2)

- $x^{\star}=$ any local minimum of BPDN
- $I=$ support of x^{\star}
- For indices in I we have

$$
\begin{aligned}
\alpha \mathbf{A}_{I}^{T}\left(\mathbf{b}-\mathbf{A} x^{\star}\right) & =\alpha \lambda \operatorname{sign}\left(x_{I}^{\star}\right) \\
x_{I}^{\star}+\alpha \mathbf{A}_{I}^{T}\left(\mathbf{b}-\mathbf{A} x^{\star}\right) & =\left(\left|x_{I}^{\star}\right|+\alpha \lambda\right) \operatorname{sign}\left(x_{I}^{\star}\right) \\
S_{\alpha \lambda}\left(x_{I}^{\star}+\alpha \mathbf{A}_{I}^{T}\left(\mathbf{b}-\mathbf{A} x^{\star}\right)\right) & =\left|x_{I}^{\star}\right| \operatorname{sign}\left(x_{I}^{\star}\right)=x_{I}^{\star}
\end{aligned}
$$

- For indices not in I we have

$$
S_{\alpha \lambda}\left(x_{I^{c}}^{\star}+\alpha \mathbf{A}_{I^{c}}^{T}\left(\mathbf{b}-\mathbf{A} x^{\star}\right)\right)=S_{\alpha \lambda}\left(\alpha \mathbf{A}_{I^{c}}^{T}\left(\mathbf{b}-\mathbf{A} x^{\star}\right)\right)
$$

$$
=0=x_{I^{c}}^{\star}
$$

- Therefore x^{\star} is the unique fixed point

Limit of IST (3)

- We conclude that

$$
x^{\star}=f\left(x^{\star}\right)=S_{\alpha \lambda}\left(x^{\star}+\alpha \mathbf{A}^{T}\left(\mathbf{b}-\mathbf{A} x^{\star}\right)\right)
$$

- x^{\star} was any local minimum of BPDN
+ it must be the unique fixed point
+ therefore, there is a unique local minimum of BPDN, which is the limit of IST.

Homotopy method

$$
\begin{aligned}
x_{I} & =\left(\mathbf{A}_{I}^{T} \mathbf{A}_{I}\right)^{-1}\left(\mathbf{A}_{I}^{T} \mathbf{b}-\lambda \cdot \operatorname{sign}\left(x_{I}\right)\right) \\
x_{I^{c}} & =0
\end{aligned}
$$

- For any sign pattern s, define $x^{\star}(\lambda, s)$ as above, which varies affinely with λ
- If $\left\|\mathbf{A}_{I(s)^{c}}^{T}\left(\mathbf{A} x^{\star}(\lambda, s)-\mathbf{b}\right)\right\|_{\infty}<\lambda$ then
- the strict inequality remains true for λ^{\prime} close to λ, meaning that in a neighborhood of λ the solution to BPDN is indeed $x^{\star}(\lambda, s)$
- the sign pattern is therefore piecewise constant
+ breakpoint occur where $\left\|\mathbf{A}_{I(s)}^{T}\left(\mathbf{A} x^{\star}(\lambda, s)-\mathbf{b}\right)\right\|_{\infty}=\lambda$

Homotopy algorithm

- For $\lambda>\left\|\mathbf{A}^{T} \mathbf{b}\right\|_{\infty}$ the solution is $x^{\star}=0$ with sign pattern $s_{0}=0$; set $\lambda_{0}=\infty$ and $k=0$
- Determine the next breakpoint: λ_{k+1} is the largest value of $\lambda<\lambda_{k}$ such that either
+ a component of $x_{I_{k}}^{\star}\left(\lambda, s_{k}\right)$ vanishes
+ a component violates the inequality

$$
\left\|\mathbf{A}_{I_{k}^{c}}^{T}\left(\mathbf{A} x^{\star}\left(\lambda, s_{k}\right)-\mathbf{b}\right)\right\|_{\infty}<\lambda
$$

- Determine the sign pattern s_{k+1} for $\lambda \lesssim \lambda_{k}$
+ some components may go to zero
+ some new components may enter

