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Structure of the course

• Part I: Overview

• Part II: Algorithms, complexity & convergence
! Lp minimization
! Greedy Algorithms

• Part III: Recovery, stability, robustness
! Null Space Properties and Lp minimization
! Exact Recovery Condition and greedy algorithms
! Restricted Isometry Constants, stability and robustness

• Part IV: Compressed Sensing and Random Matrices
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Introduction

Sparsity

Compression
Adaptive 

representation
Feature extraction
Kernel methods 

(SVM ...)

Denoising
Blind source 
separation

Compressed 
sensing

...

Sparsity = old concept!
(wavelets, ...)

Natural / traditional role :

Sparsity = low cost (bits, computations, ...)  
direct goal

Novel indirect role

Sparsity = prior knowledge 
Tool for inverse problems
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Overview

4

• Introduction : source separation and inverse problems

• Sparse decomposition algorithms
! L1 minimisation
! Matching Pursuits

• Provably good algorithms to recover sparse 
representations

• Compressed sensing & random sampling



«!Blind!» Audio 
Source Separation

•  «!Softly as in a morning sunrise!»
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• Mixing model : linear instantaneous mixture

• Source model : if disjoint time-supports …

Blind Source Separation

... then clustering to :
1- identify (columns of) the mixing matrix
2- recover sources

s1(t)

s3(t)
s2(t)
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yright(t)

yleft(t)

yleft(t)

yright(t)



• Mixing model : linear instantaneous mixture

• In practice ... 

Blind Source Separation

s1(t)

s3(t)
s2(t)
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yright(t)

yleft(t)

yleft(t)

yright(t)



• Mixing model in the time-frequency domain

• And “miraculously” ...

Time-Frequency Masking

... time-frequency representations of audio 
signals are (often) almost disjoint.

S(τ, f)
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Yright(τ, f)

Yleft(τ, f)

Yleft(τ, f)

Yright(τ, f)



Sparse decomposition 
algorithms



Forward 
linear model

Vocabulary

Known linear system:
dictionary, mixing matrix, sensing system...

Observed data:
signal, image, mixture of sources,...

b ≈ Ax

Unknown
representation, sources, ...
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b

A

x

Decomposition
Reconstruction

Separation



Sparsity and Ill-Posed 
Inverse Problems

• Ill-posedness if more unknowns than equations

• Uniqueness of sparse solutions:
!  if            are “sufficiently sparse”, 

! then

• Recovery with practical algorithms
! Thresholding, Matching Pursuits, Lp minimization p<=1,...

x0, x1
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Ax0 = Ax1 !⇒ x0 = x1

Ax0 = Ax1 ⇒ x0 = x1



Overall compromise 

• Approximation quality

• Ideal sparsity measure :           “norm”

! Relaxed sparsity measure

‖Ax− b‖2

!0
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‖x‖0 := !{n, xn "= 0} =
∑

n

|xn|0

‖x‖p := (
∑

n

|xn|p)1/p



Principle

Tuning 
quality/sparsity regularization parameter

Variants

• choice of sparsity measure p

• optimization algorithm 

• initialization

Iterative greedy algorithmsGlobal optimization

 Algorithms
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λ

min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p



Global Optimization 

• Principle

! Sparse representation
! Sparse approximation
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λ→ 0
λ > 0

min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p



Global Optimization 

• Principle

! Sparse representation
! Sparse approximation

Linear
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Global Optimization 

• Principle

! Sparse representation
! Sparse approximation

NP-hard 
combinatorial Linear
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Global Optimization 

• Principle

! Sparse representation
! Sparse approximation

local minima convex : global minimum

NP-hard 
combinatorial Linear

Lasso [Tibshirani 1996],  Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
 Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, Defrise, de Mol 2004, Combettes, & Pesquet 2008 ...]
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Global Optimization 

• Principle

! Sparse representation
! Sparse approximation

local minima convex : global minimum

NP-hard 
combinatorial Iterative thresholding / proximal algo.FOCUSS / IRLS Linear

Lasso [Tibshirani 1996],  Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]

Linear/Quadratic programming (interior point, etc.)
 Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

Iterative / proximal algorithms [Daubechies, Defrise, de Mol 2004, Combettes, & Pesquet 2008 ...]
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Principle

iterative decomposition

• select new components

• update residual

Tuning 
quality/sparsity regularization parameter

stopping criterion
(nb of iterations, error level, ...)

Variants

• choice of sparsity measure p

• optimization algorithm 

• initialization

•selection criterion (stagewise ...)

•update strategy (orthogonal ...)

Iterative greedy algorithmsGlobal optimization

 Algorithms
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λ

ri = b−Axi

‖ri‖ ≤ ε

min
x

1
2
‖Ax− b‖2

2 + λ‖x‖p
p

‖xi‖0 ≥ k



Main greedy algorithms
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Matching Pursuit OMP Stagewise

Selection

Update

MP & OMP: Mallat & Zhang 1993
StOMP:  Donoho & al 2006 (similar to MCA, Bobin & al 2006)

A = [A1, . . .AN ]

Γi := arg max
n

|AT
nri−1| Γi := {n | |AT

nri−1| > θi}

Λi = Λi−1 ∪ Γi

xi = xi−1 + A+
Γi

ri−1

Λi = Λi−1 ∪ Γi

xi = A+
Λi

b
ri = b−AΛixi

b = Axi + ri

ri = ri−1 −AΓiA
+
Γi

ri−1



Provably good algorithms



• Recoverable set for a given “inversion” algorithm

Recovery analysis
for inverse problem
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b = Ax

{x = AlgoA(Ax)}



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm 

Recovery analysis
for inverse problem
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• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm 
! 1-sparse

Recovery analysis
for inverse problem
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b = Ax

‖x‖0 ≤ 1

{x = AlgoA(Ax)}



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm 
! 1-sparse
! 2-sparse

Recovery analysis
for inverse problem
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b = Ax

‖x‖0 ≤ 1

{x = AlgoA(Ax)}

‖x‖0 ≤ k



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm 
! 1-sparse
! 2-sparse
! 3-sparse ...

Recovery analysis
for inverse problem
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• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm
! 1-sparse
! 2-sparse
! 3-sparse ...

Recovery analysis 
for inverse problem
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‖x‖0 ≤ 1

b = Ax

‖x‖0 ≤ k
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Recovery analysis 
for inverse problem
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‖x‖0 ≤ 1

b = Ax

{x = AlgoB(Ax)}

‖x‖0 ≤ k



• Recoverable set for a given “inversion” algorithm

• Level sets of L0-norm
! 1-sparse
! 2-sparse
! 3-sparse ...

Recovery analysis 
for inverse problem
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‖x‖0 ≤ 1

b = Ax

{x = AlgoB(Ax)}

‖x‖0 ≤ k



Empirical facts

• Highly sparse vectors : always recovered by
! Orthonormal Matching Pursuit
! Basis Pursuit (L1 minimization)

• Relatively sparse vectors : likely to be recovered 

20

‖x0‖0

P (x! = x0) x!
1 = arg min

Ax=Ax0
‖x‖1

x!
OMP = OMP(Ax0)

kOMP(A) k1(A)
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Empirical facts
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Ideal Sparse Approximation

• Brute force search

• Theorem (Davies et al, Natarajan)

" " It is NP-hard!

• Are there other more efficient alternatives ?
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Ideal Sparse Approximation

• Brute force search

• Theorem (Davies et al, Natarajan)

" " It is NP-hard!

• Are there other more efficient alternatives ?

Many n-tuples to try!
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Recovery with Basis Pursuit

• Some 3D geometry
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Recovery with Basis Pursuit

• Some 3D geometry

Feasible solutionsSparse solutions
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Equivalence between 
L0, L1, OMP

• Theorem : assume that

! if                     

! if

• Donoho & Huo 01 : pair of bases, coherence

• Donoho & Elad, Gribonval & Nielsen 2003 : dictionary, coherence

• Tropp 2004 : Orthonormal Matching Pursuit, cumulative coherence

• Candes, Romberg, Tao 2004 : random dictionaries, restricted isometry constants
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b = Ax0

then x0 = x!
0

x0 = x!
1

where x!
p = arg min

Ax=Ax0
‖x‖p

then 

‖x0‖0 ≤ k0(A)
‖x0‖0 ≤ k1(A)



State of the art tools to 
estimate

A
N unit columns

max over N(N-1) entries

AT A− Id

AI

max over                    subsets I

(Cumulative) coherence
Low cost

“Coarse / pessimistic”

Isometry constants
Hard to compute
“Almost sharp” ?
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L0-recovery (identifiability)
L1-recovery (identification)

Common beliefs

k̂(A) = (1 + 1/µ)/2

δk := sup
!I≤k, c∈Rk

∣∣∣∣
‖AIc|‖2

2

‖c‖2
2

− 1
∣∣∣∣

δ2k1 <
√

2− 1

kp(A) n ∈ I, !I ≤ k

N !
k!(N − k)!

δ2k0 < 1

µ = µ(A) := max
k !=l

|〈Ak,Al〉|

‖An‖2 = 1



Compressed sensing



Compressed Sensing
• MRI from incomplete measures 

[from Candès, Romberg & Tao]

Lossy measurement
=  tomography

Data
Measured data

 (FFT minus lost data)

26

z = Ky

Not observed
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Lossy measurement
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Data
Measured data
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-1
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z = Kyy = Φx

Sparse wavelet 
transform

Not observed



Compressed Sensing
• MRI from incomplete measures 

[from Candès, Romberg & Tao]

Sparse L1  

decomposition

(Candes et al 2004)

Lossy measurement
=  tomography

Data
Measured data

 (FFT minus lost data)
FFT

-1

Reconstruction

26

z = Kyy = Φx

min ‖x‖1, subject to z = KΦx

Sparse wavelet 
transform

Not observed



Classical Shannon Sampling

• «!Sample first, think and compress afterwards!» 

High resolution

Analog domain Digital domain

A/D conversion

K linear measures (samples)

z = Kyy

27

z



Classical Shannon Sampling

• «!Sample first, think and compress afterwards!»

High resolution

Analog domain Digital domain

A/D conversionSparse model

y = Φx
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z = Kyy zx



Classical Shannon Sampling

• «!Sample first, think and compress afterwards!»

High resolution

Analog domain Digital domain

A/D conversionSparse model
JPEG / MP3

Compression
(~costly)

Decoding
(~cheap)

29

y = Φx z = Kyy zx



Compressed Sensing

• First model the data, then sample & compress

Analog domain Digital domain

Sparse model

30

y = Φx yx



Compressed Sensing

• First model the data, then sample & compress

Analog domain Digital domain

Sparse model
A/D conversion
and compression

(~cheap)
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y = Φx z = Kyy zx



Compressed Sensing

• First model the data, then sample & compress

Analog domain Digital domain

Sparse model
A/D conversion
and compression

(~cheap)

Sparse recovery
(~costly)

min ‖x‖1, subject to z = KΦx
32

y = Φx z = Kyy zx x



Partial conclusions

• Sparsity helps solve ill-posed inverse problems (more 
unknowns than equations)

• Sparse approximation is NP-hard but efficient sub-
optimal algorithms (pursuits) exist 

• If there is a sufficiently sparse solution, it is recovered by 
many of the heuristic algorithms

• This is the fundamental basis underlying the 
development of compressed sensing
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Structure of the course

• Part I: Overview

• Part II: Algorithms, complexity & convergence
! Lp minimization
! Greedy Algorithms

• Part III: Recovery, stability, robustness
! Null Space Properties and Lp minimization
! Exact Recovery Condition and greedy algorithms
! Restricted Isometry Constants, stability and robustness

• Part IV: Dictionaries, Random Matrices and 
Compressed Sensing
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